Category: Wavelets

Is time an observable? or is it a mere parameter?

I’ve just put my long paper “Time dispersion and quantum mechanics” up on the physics archive.   If you are here, it is very possibly because you have at one point or another talked with me about some of the ideas in this paper and asked to see the paper when it was done.  But if you just googled in, welcome!

The central question in the paper is “is time fuzzy? or is it flat?” Or in more technical language, “it time an observable? or is it a mere parameter?”

To recap, in relativity, time and space enter on a basis of formal equivalence. In special relativity, the time and space coordinates rotate into each other under Lorentz transformations. In general relativity, if you fall into a black hole time and the radial coordinate appear to change places on the way in. And in wormholes and other exotic solutions to general relativity, time can even curve back on itself.

For all its temporal shenanigans, in relativity everything has a definite position in time and in space.  But in quantum mechanics, the three space dimensions are fuzzy.  You can never tell where you are exactly along the x or y or z positions.  And as you try to narrow the uncertainty in say the x dimension, you inevitably (“Heisenberg uncertainty principle”) find the corresponding momentum increasing in direct proportion. The more finely you confine the fly, the fiercer it buzzes to escape. But if it were not for this effect, the atoms that make us — and therefore we ourselves in turn — could not exist (more in the paper on this).

So in quantum mechanics space is complex,  but time is boring. It is well-defined, crisp, moves forward at the traditional second per second rate.  It is like the butler Jeeves at a party at Bertie Wooster’s Drone’s Club:  imperturbable, stately, observing all, participating in nothing. 

Given that quantum mechanics and relativity are the two best theories of physics we have, this curious difference about time is at a minimum, how would Jeeves put it to Bertie?, “most disconcerting sir”.

Till recently this has been a mere cocktail party problem: you may argue on one side, you may argue on the other, but it is more an issue for the philosophers in the philosophy department than for the experimenters in the physics department.

But about two years ago, a team led by Ossiander managed to make some experimental measurements of times less than a single attosecond.    As one attosecond is to a second as a second is to the age of the universe, this is a number small beyond small.

But more critically for this discussion, this is roughly about how fuzzy time would be if time were fuzzy.  A reasonable first estimate of the width of an atom in time is the time it would take light to cross the atom — about an attosecond.

And this means that we can — for the first time — put to experimental test the question:  is time fuzzy or flat? is time an observable or a parameter?

To give the experimenters well-defined predictions is a non-trivial problem. But it’s doable. If we have a circle we can make some shrewd estimates about the height of the corresponding sphere.  If we have an atomic wave function with well-defined extensions in the three space dimensions, we can make some very reasonable estimates about its extent in time as well.

The two chief effects are non-locality in time as an essential aspect of every wave function and the complete equivalence of the Heisenberg uncertainty principle for time/energy to the Heisenberg uncertainty principle for space/momentum.

In particular, if we send a particle through a very very fast camera shutter, the uncertainty in time is given by the time the camera shutter is open. 

In standard quantum mechanics, the particle will be clipped in time.  Time-of-arrival measurements at a detector will show correspondingly less dispersion. 

But if time is fuzzy, then the uncertainty principle kicks in.  The wave function will be diffracted by the camera shutter. If the uncertainty in time is small, the uncertainty in energy will be large, the particle will spread out in time, and time-of-arrival measurements will show much greater dispersion. 

Time a parameter — beam narrower in time.  Time an observable — beam much wider in time.

And if we are careful we can get estimates of the size of the effect in a way which is not just testable but falsifiable.  If the experiments do not show the predicted effects at the predicted scale, then time is flat.

Of course, all this takes a bit of working out.  Hence the long paper.

There was a lot to cover:  how to do calculations in time on the same basis as in space, how to define the rules for detection, how to extend the work from single particles to field theory, and so on. 

The requirements were:

  • Manifest covariance between time and space at every step,
  • Complete consistency with established experimental and observational results,
  • And — for the extension to field theory — equivalence of the free propagator for both Schrödinger equation and Feynman diagrams.

I’ve been helped by many people along the way, especially at the Feynman Festivals in Baltimore & Olomouc/2009; at some conferences hosted by QUIST and DARPA; at The Clock and the Quantum/2008 conference at the Perimeter Institute; at the Quantum Time/2014 conference Pittsburgh; at   Time and Quantum Gravity/2015 in San Diego; and most recently at the  Institute for Relativistic Dynamics (IARD) conference this year in Yucatan.  An earlier version of this paper was presented as a talk at this last conference & feedback from the participants was critical in helping to bring the ideas to final form.

Many thanks! 

The paper has been submitted to the IOP Conference Proceedings series.  The copy on the archive is formatted per the IOP requirements so is formatted for A4 paper, and with no running heads or feet.  I have it formatted for US Letter here.



Time and Quantum Mechanics

I’ve submitted an extended abstract for my paper “Time and Quantum Mechanics” to the Center for Philosophy of Science’s workshop on Quantum Time. I’m not sure what the odds are of my getting in, but at a minimum prepping the abstract for the center has been a big help getting the paper organized, working out what is essential to the argument, and what can be let go.

Note the abstract is more extended than abstract, about two pages:

CFP-abstract-extended

Dissertation complete

I’ve finished re-checking the dissertation:  629 equations, 188 references, 110 pages, 83 input files, 48 lists, 36 footnotes, 28 quotes, 17 figures, 6 chapters (counting the appendix), 5 requirements, 1 idea.  It should be up on the physics archive in a day or two.

“Morlet wavelets in quantum mechanics” updated

The announcement the world has been waiting for can now be made:  the paper “Morlet wavelets in quantum mechanics” has been updated.  The latest version has a much clearer explanation of the point, a number of errors corrected, and some stylistic infelicities eliminated.

This version has been uploaded to the physics archive.

Abstract:

Wavelets offer significant advantages for the analysis of problems in quantum mechanics. Because wavelets are localized in both time and frequency they avoid certain subtle but potentially fatal conceptual errors that can result from the use of plane wave or delta function decomposition. Morlet wavelets are particularly well-suited for this work: as Gaussians, they have a simple analytic form and they work well with Feynman path integrals. To take full advantage of Morlet wavelets we need an explicit form for the inverse Morlet transform and a manifestly covariant form for the four-dimensional Morlet wavelet. We supply both here.

Why quantum time?

Why quantum time?

A few years ago I was looking for an interpretation/formalism for quantum mechanics which would be manifestly symmetric between time and space. The first question I had was:

Is time already quantized?

Is time treated using the same quantum rules as space is? can quantum mechanics be written in a way which is manifestly covariant?
Read more »

Relativistic Morlet Wavelets

Wavelets are like musical notes: they are wave forms limited in both time and frequency. What makes them particularly useful is that any reasonable wave function may be written as a sum over them.

Usually we think of music in terms of pure tones, in terms of its Fourier components. But pure tones can be a bit too pure. For one thing, if a tone is to be completely pure it has to last forever, not a characteristic associated with practical questions. Wavelets are impure tones, and therefore a better match to the real world.
Read more »

WordPress Themes