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Abstract

In quantum mechanics the time dimension is treated as a parameter,
while the three space dimensions are treated as observables. This assump-
tion is both untested and inconsistent with relativity. From dimensional
analysis, we expect quantum effects along the time axis to be of order
an attosecond. Such effects are not ruled out by current experiments.
But they are large enough to be detected with current technology, if suf-
ficiently specific predictions can be made. To supply such we use path
integrals. The only change required is to generalize the usual three di-
mensional paths to four. We predict a large variety of testable effects. The
principal effects are additional dispersion in time and full equivalence of
the time/energy uncertainty principle to the space/momentum one. Ad-
ditional effects include interference, diffraction, and entanglement in time.
The usual ultraviolet divergences do not appear: they are suppressed by
a combination of dispersion in time and entanglement in time. The ap-
proach here has no free parameters; it is therefore falsifiable. As it treats
time and space with complete symmetry and does not suffer from the ul-
traviolet divergences, it may provide a useful starting point for attacks on
quantum gravity.
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physical principles, but probe them by exposing their most radical
conclusions.” – Kip Thorne Thorne [2009].

“You can have as much junk in the guess as you like, provided
that the consequences can be compared with experiment.” – Richard
Feynman Feynman [1965]

1 Introduction

In relativity, time and space enter on a basis of formal equivalence. In special
relativity, the time and space coordinates rotate into each other under Lorentz
transformations. In general relativity, the time and the radial coordinate change
places at the Schwarzschild radius (for instance in Adler et al. [1965]). In worm-
holes and other exotic solutions to general relativity, time can even curve back
on itself Gödel [1949], Thorne [1994].

But in quantum mechanics “time is a parameter not an operator” (Hilgevo-
ord Hilgevoord [1996, 1998]). This is clear in the Schrödinger equation:

ı
d

dτ
ψτ (~x) = Ĥψτ (~x) (1)

Here the wave function is indexed by time: if we know the wave function at time
τ we can use this equation to compute the wave function at time τ + ε. The
wave function has in general non-zero dispersion in space, but is always treated
as having zero dispersion in time. This would appear to be inconsistent with
special relativity.

Alice( ) tAlice, xAlice( )

Bob(
) t Bob

, x Bob

(
)

Alice’s future/
Bob’s Past

Alice’s past/
Bob’s future

Alice & Bob
both see this as future

space/Alice

tim
e/

Al
ic

e

tim
e/B

ob

space/Bob

Alice & Bob
both see this as Past

Figure 1: Wave functions for Alice and Bob

Consider Alice in her laboratory, her co-worker Bob jetting around like a fu-
sion powered mosquito. Both are studying the same system but with respective
wave functions:

ψ(Alice) (tAlice, xAlice)
ψ(Bob) (tBob, xBob)

(2)

Alice and Bob center their respective wave functions on the particle:
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〈tAlice〉 = 〈tBob〉 = 0
〈xAlice〉 = 〈xBob〉 = 0 (3)

These are distinct wave functions but give the same predictions for all ob-
servables. And do so to an extremely high degree of reliability.

But at Alice's time zero, Bob's wave function extends into her past and
future. And at Bob's time zero her wave function extends into his past and
future.

There are at least two problems here.
One is that in quantum mechanics there is a fairly strict “plane of the

present”. The quantum mechanical wave function is non-localized in space but
is strictly localized in time. What if Alice decided to work with Bob's wave
function, rather than her own? She will get by hypothesis all the same predic-
tions, but will be using a wave function that from her point of view slops into
past and future.

The other is that from the point of view of special relativity, there should
not be a strict “plane of the present” in the first place. We should be able to
rotate between the four dimensional references frames of Alice and Bob as easily
as we rotate between references frames for the three space dimensions.

What happens if we shift to four dimensional wave functions?

ψ (~x) → ψ (t, ~x) (4)

Assume the coordinate systems for Alice and Bob are related by a Lorentz
transformation Λ:

x(Bob) = Λx(Alice) (5)

Then their wave functions can be related by a Lorentz transformation of
their coordinates:

ψ(Bob)
(
x(Bob)

)
= ψ(Alice)

(
Λx(Alice)

)
(6)

and matters are much more straightforward.
We make this our basic hypothesis: the quantum mechanical wave function

should be extended in the time direction on the same basis as it is extended along
the three space dimensions.

We are playing a “game of if” here: we will develop the push the idea as
hard as we can and see what breaks. We are not going to argue that this is
or is not true. We are going to look for experimental tests and then let the
experimentalists decide the question.

There are two principal effects:

1. Dispersion in time appears on same basis as dispersion in space. Physical
wave functions are always a bit spread out in space; they will now also be
a bit spread out in time.
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2. The uncertainty principle for time/energy is treated on same basis as the
uncertainty principle for space/momentum. If a particle's position in time
is well-defined, its energy will highly uncertain and vice versa.

1.0.1 Dispersion in time

If the wave functions normally have an extension in time then every time-specific
measurement should show additional dispersion in time.

Suppose we are measuring the time-of-arrival of a particle at a detector.
Define the average time-of-arrival as:

〈
τ (TOA)

〉
≡

∞�

−∞

dττp(TOA) (τ) (7)

with an associated uncertainty:

〈
∆τ (TOA)

〉
≡

√√√√√ ∞�

−∞

dττ2p(TOA) (τ)−
〈
τ (TOA)

〉2 (8)

The probability distribution for the particle will normally be spread out in
space, so its arrival times will also be spread out, depending on the velocity of
the particle and its dispersion in space.

But if it also has a dispersion in time, then part of the wave function will
reach the detector – thanks to the fuzziness in time – a bit sooner and also a
bit later than otherwise expected. There will be an additional dispersion in the
time-of-arrival due to the dispersion in time.

As we will see (subsection 4.3), at non-relativistic speeds, the dispersion in
the time-of-arrival is dominated by the dispersion in space, so this effect may
be hard to pick out. At relativistic speeds, the contributions of the space and
time dispersions can be comparable.

1.0.2 Uncertainty principle for time and energy

Of particular significance for this work are differences in the treatment of the
uncertainty principle for time/energy as opposed to that for space/momentum.

In the early days of quantum mechanics, these were treated on same basis.
See for instance the discussions between Bohr and Einstein of the famous clock-
in-a-box experiment Schilpp and Bohr [1949] or the comments of Heisenberg in
Heisenberg [1930].

In later work this symmetry was lost. As Busch Busch [2001] puts it “. . .
different types of time energy uncertainty can indeed be deduced in specific
contexts, but . . . there is no unique universal relation that could stand on
equal footing with the position-momentum uncertainty relation.” See also Pauli,
Dirac, and Muga Pauli [1980], Dirac [1958], Muga et al. [2002, 2008].
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There does not appear to be any experimental test of this or observational
evidence for it; it is merely the way the field has developed.

That is not to say that there are not uncertainties with respect to time, but
they are side effects of other uncertainties in quantum mechanics. For instance,
if a particle is moving to the right, spread out in space, and going towards a
detector at a fixed position, its time-of-arrival will have a dispersion in time.
But this is a side-effect of the dispersion in space.

Now consider a particle going through a narrow slit in time, for instance a
camera shutter. Its wave function will be clipped in time. If the wave function
is not extended in time, then the wave function will merely be clipped: the
resulting dispersion in time at detector will be reduced.

But if the wave function is extended in time and the Heisenberg uncertainty
principle applies in time/energy on the same basis as with space/momentum,
then a very fast camera shutter will give a small uncertainty in time at the gate:

∆t→ 0 (9)

causing the uncertainty in energy to become arbitrarily great:

∆E ≥ 1
∆t

⇒ ∆E →∞ (10)

which will in turn cause the wave function to be diffracted, to fan out in
time, and the dispersion in time-of-arrival to become arbitrarily great.

1.0.3 A necessary hypothesis

This question does not appear to have been attacked directly. As noted, the as-
sumption that the wave function is not extended in time seems to have crept into
the literature of its own, without experimental test or observational evidence.

To make an experimental test of this question we have to develop predictions
for both branches:

1. Assume the wave function is not extended in time. Make predictions about
time-of-arrival and the like.

2. Assume the wave function is extended in time. Make equivalent predic-
tions.

3. Compare.

We have to develop both branches in a way that makes the comparison straight-
forward.

Further, to make the results falsifiable we have to develop the extended-in-
time branch in a way that is clearly correct. A null result should show that the
wave function is not extended in time.

These requirements motivate much of what follows.
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1.0.4 Literature

The literature for special relativity and for quantum mechanics is vast. Our
focus is on the critical intersection of the two. References of particular interest
here include:

• Feynman's original papers: Feynman [1949a,b].

• Block universe picture, Barbour, Price: Barbour [2000], Price [1996].

• Reviews of the role of time, Schulman, Zeh, Muga, Callender: Schulman
[1997], Zeh [2001], Muga et al. [2002, 2008], Callender [2017].

• Cramer's transactional interpretation:Cramer [1986, 1988], Kastner [2013],
Cramer [2016].

• The time symmetric quantum mechanics of Aharonov and Reznik: Aharonov
and Rohrlich [2005], Reznik and Aharonov [1995].

• The relativistic dynamics program of Horwitz, Land, and others: Land
and Horwitz [1996], Gill et al. [2010], Horwitz [2015].

1.1 Order of magnitude estimate

Has this hypothesis has already been falsified? Quantum mechanics has been
tested with extraordinary precision. Should associated effects have been seen
already, even if not looked for?

Consider the atomic scale given by the Bohr radius 5.3 10−11m. We take
this as an estimate of the uncertainty in space.

We assume the maximum symmetry possible between time and space. We
therefore infer that the uncertainty in time should be of order the uncertainty
in space (in units where c = 1).

Dividing the Bohr radius by the speed of light we get the Bohr radius in time
a0 = .177 10−18s, or less than an attosecond. .177as is therefore our starting
estimate of the uncertainty in time.

Therefore from strictly dimensional and symmetry arguments, the effects
will be small, of order attoseconds. This is sufficient to explain why such effects
have not been seen.

At the same time, the time scales we can look at experimentally are now get-
ting down to the attosecond range. A recent paper by Ossiander et al Ossiander
et al. [2016] reports results at the sub-attosecond level.

Therefore if we can provide the experimentalists with a sufficiently well-
defined target, the hypothesis should be falsifiable in practice.

1.2 Plan of attack

Look, I don’t care what your theory of time is. Just give me
something I can prove wrong. – experimentalist at the 2009 Feynman
Festival in Olomouc
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1.2.1 Primary objective is falsifiability

It is not enough to extend quantum mechanics to include time. It is necessary
to do so in a way that can be proved wrong. The approach has to be so strongly
and clearly constrained that if it is proved wrong, the whole project of extending
quantum mechanics to include time is falsified.

Our requirements therefore are that we have:

1. the most complete possible equivalence in the treatment of time and space
– manifest covariance at every point at a minimum,

2. consistency with existing experimental and observation results,

3. and consistency between the single particle and multiple particle domains.

These requirements leave us with no free parameters. And having no free pa-
rameters means in turn that our hypothesis is falsifiable in principle.

To get to falsifiable in practice, we will look for the simplest cases that make
a direct comparison possible. We will also look at points of principle that that
need to be addressed.

We will use the acronym SQM for standard quantum mechanics. We will use
the acronym TQM for temporal quantum mechanics. By TQM we mean SQM
with time treated on the system basis as space: time just as much an observable
as the three space dimensions.

We do not mean by “temporal quantum mechanics” that time itself comes
in small chunks or quanta! For instance, there has been speculation that time is

granular at the scale of the Planck time: tPlanck ≡
√

h̄G
c5 ≈ 5.39116x10−44s =

5.39116x10−26as. Perhaps it is, perhaps it isn’t. But as this is 26 orders of
magnitude smaller than the times we are considering here, it is reasonable for
us to take time as continuous. And since space is treated by SQM as continuous,
and since the defining assumption of TQM is the maximum symmetry between
time and space, we are required to take time in TQM continuous.

1.2.2 Single particle case

In the single particle case we will:

1. Generalize path integrals to include time as an observable.

2. Derive the corresponding Schrödinger equation as the short time limit of
the path integral.

3. Develop the free solutions. We will estimate the initial wave function, let
it evolve in time, and detect it. We will compute the dispersions of time-
of-arrival measurements in SQM and in TQM. In general the differences
are real but small.

4. Develop the semi-classical approximation for TQM. We will show that
TQM is to SQM (with respect to time) as SQM is to classical mechanics.
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5. Analyze the single and double slit experiments. The single slit in time
experiment provides the decisive test of temporal quantum mechanics. In
SQM, the narrower the slit, the less the dispersion in subsequent time-
of-arrival measurements. In TQM, the narrower the slit, the greater the
dispersion in subsequent time-of-arrival measurements. In principle, the
difference may be made arbitrarily great.

1.2.3 Multiple particle case

We will then extend TQM to include the multiple particle case, i.e. field theory.
We will show, using a toy model, that:

1. We can extend the usual path integral approach to include time as an
observable. The basis functions in Fock space extend in a natural way
from three to four dimensions, the Lagrangian is unchanged, and the usual
Feynman diagram expansions appear.

2. For each Feynman diagram in SQM we can compute the TQM equivalent.
Therefore any problem that can be solved using Feynman diagrams in
SQM can be solved in TQM.

3. The usual ultraviolet divergences do not appear (the combination of dis-
persion in time and entanglement in time contain them).

4. And that there are a large number of additional experimental effects to
be seen, including:

(a) wave functions anti-symmetric in time,

(b) correlations in time (Bell's theorem in time),

(c) and forces of anticipation and regret.

1.2.4 Overall conclusions

With this done, we will argue in the discussion:

1. that TQM is not ruled out a priori.

2. that TQM is falsifiable. And given experimental work like Ossiander's,
probably with current technology.

3. that TQM is a source of interesting experiments. Every foundational
experiment in SQM has an “in time” variant.

4. that TQM is a potential starting point for attacks on the quantum grav-
ity problem, since TQM is manifestly covariant and untroubled by the
ultraviolet divergences.
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5. that as TQM is a straight-forward extrapolation of quantum mechanics
and special relativity, experiments that falsify TQM are likely to require
modification of our understanding of either quantum mechanics or special
relativity or both. Something will have to break. (We suspect our Olo-
mouc experimentalist will not much care which, so long as he gets to do
the breaking.)

2 Path integrals

2.1 Overview

To extend quantum mechanics to include time we will take as our starting
point Feynman's path integral approach to quantum mechanics Feynman et al.
[2010], Schulman [1981], Rivers [1987], Swanson [1992], Khandekar et al. [1993],
Kashiwa et al. [1997], Grosche and Steiner [1998], Zinn-Justin [2005], Kleinert
[2009], Zee [2010].

With the path integral approach, the only change we will need to make is
to generalize the paths from varying in three dimensions to varying in four.

To make clear what this means, consider the case of Alice walking her dog,
say from her front door to Bob's.

Alice will take the shortest (classical) path from door to door.
But her dog will dart from side to side, now investigating a mailbox to the

left, now checking out a lamppost to the right. In fact, as a quantum dog he will
investigate all such paths simultaneously. While he will start at the same time
and place as Alice, and finish at the same time and place as Alice, in between
he will travel simultaneously along all possible paths.

But – in SQM – only along paths in space. At each tick of Alice's digital
watch, her dog will be found off to the left or right, jumping up or digging down,
further along the path to Bob's, or holding back for an important investigation.

But in TQM, the quantum dog can – and therefore will – advance into the
future and drop back into the past. So that tick by tick of Alice's watch, her
dog's paths will have to tracked in four dimensions rather than three.

This is harder to visualize, being out of our normal experience. So we develop
the analysis a bit formally, letting math take the place of an as yet undeveloped
intuition.

Path integrals, as the name suggests, are done by summing over all paths
from starting point to finish, weighting each path by the integral of the La-
grangian (the action) along it:

ψT (xT ) =
�
Dxτ exp

ı T�

0

dτL [x, ẋ]

ψ0 (x0) (11)

Piece by piece:

1. ψ0 (x0) is the initial wave function. We will be breaking these down into
sums over Gaussian test functions using Morlet wavelet analysis.
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2. τ is the clock time as given by Alice's digital watch. We will break up the
paths into the bits from one clock tick to the next.

3. Dxτ represents the paths. Each path is defined by its coordinates at each
clock tick. In SQM, these are the values of xτ , yτ , zτ at each clock tick.
In TQM these are values of tτ , xτ , yτ , zτ at each clock tick.

4. L [x, ẋ] is a suitable Lagrangian. We will be using one that works equally
well for both SQM and TQM.

5. ı
T�
0

dτL [x, ẋ] is the action, the integral over the Lagrangian taken path by

path.

6. And ψT (xT ) is the final wave function, the amplitude for the dog to arrive
at Bob's door step.

We will look at:

1. What do we mean by τ the clock time?

2. What do we mean by the coordinate time t in t, x, y, z?

3. How do we define the initial wave function in a way that does not poten-
tially bias the outcome?

4. What Lagrangian shall we use?

5. How do we get the sums to converge?

6. Having gotten the sums to converge, how do we normalize them?

7. And what do all the pieces look like when we put them back together?

2.2 Laboratory time

In classical mechanics when we look at the action, at the integral of the La-
grangian over time:

T�

0

dτL [x, ẋ] (12)

we are free to take the parameter τ as any monotonically increasing variable.
We will get the same classical equations of motion in any case.

A typical choice is to select τ as the proper time of the particle in question.
However this makes it difficult to extend the work to the multiple particle case,
where there are many particles and therefore many proper times at play.

Here we choose to use the time as shown on a laboratory clock. We take
the term laboratory time from Busch Busch [2001]. We will use the terms clock
time and laboratory time interchangeably.
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It is useful to visualize this clock as a metronome, breaking up the clock
time into a series of N ticks each of length ε. If τ = 0 at the source, and τ = T
at the detector, we have:

ε ≡ T

N
(13)

We will take the limit as N →∞ as the final step in the calculation.

2.3 Coordinate time

We visualize a four dimensional coordinate system coordinates t, x, y, z. We
will refer to t as coordinate time by analogy with the three coordinate space
dimensions: coordinate x, coordinate y, and coordinate z.

Paths are defined with reference to this coordinate system. If the time by
Alice's watch is τ , then each path π will have a location at τ given by:

πτ (t, x, y, z) (14)

It may help to think of the coordinates as laid out on a piece of four di-
mensional graph paper. At a specific clock tick n, a specific path π will be
represented by a dot on a specific vertex on the four dimensional graph paper.
If we want to see the progress of the path with respect to clock time, we can
flip the series of pieces of graph paper like one of those old time flip movies.

If our graph paper has M grid lines in each direction, the number of vertices
on a page is M4, and the number of paths total is M4N . Each different sequence
of grid points counts as a distinct path.

The path integral measure Dx is usually defined by assigning a weight of
one to each distinct path, and then taking the limit as the spacing goes to zero.

Since coordinate time is on the same footing as the three space coordinates
there is a corresponding energy operator:

px ≡ −ı
∂

∂x
⇒ E ≡ ı

∂

∂t
(15)

We will refer to this as coordinate energy. It is not positive definite or
bounded from below. Since px can be positive or negative, by our controlling
requirement of covariance E can be positive or negative.

We discuss the relationship between clock time and coordinate time in detail
in G.

2.4 Initial wave function

We need a starting set of wave functions ψ0 at clock time τ = 0. We will
need wave functions that extend in both coordinate time and space. The usual
choices would be δ functions or plane waves.

In coordinate time these might be:

δ(t− t0) (16)
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e−ıE(t−t0) (17)

Or in space:

δ(x− x) (18)

eıp(x−x0) (19)

But neither δ functions nor plane waves are physical. Their use creates a
risk of artifacts.

More physical would be Gaussian test functions, for instance in coordinate
time:

ϕ (t) ≡ 4

√
1
πσ2

t

e
−ıE(t−t0)−

(t−t0)2

2σ2
t (20)

Or in space:

ϕ (x) ≡ 4

√
1
πσ2

x

e
ıp(x−x0)−

(x−x0)2

2σ2
x (21)

But while Gaussian test functions are physically reasonable they are not
completely general.

We can achieve both generality and physical reasonableness by using a basis
of Morlet wavelets Morlet et al. [1982], Chui [1992], Meyer and Salinger [1992],
Kaiser [1994], Berg [1999], Bratteli and Jørgensen [2002], Addison [2002], Visser
[2003], Antoine et al. [2004], Ashmead [2012].

- 3 - 2 - 1 1 2 3

- 0.4

- 0.2

0.2

0.4

real

imaginary

Figure 2: Mother Morlet wavelet

Morlet wavelets are derived by starting with a “mother” wavelet

φ(mother) (t) ≡
(
e−ıt − 1√

e

)
e

(
− t2

2

)
(22)

and scaling and displacing it with the replacement t→ t−l
s
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φsl (t) =
1√
|s|

(
e−ı(

t−l
s ) − 1√

e

)
e−

1
2 ( t−l

s )2

(23)

Any normalizable function f can be broken up into wavelet components f̂ using

f̂sl =

∞�

−∞

dtφ∗sl (t) f (t) (24)

And then recovered using the inverse Morlet wavelet transform:

f (t) =
1
C

∞�

−∞

dsdl

s2
φsl (t) f̂sl (25)

The value of C is worked out in Ashmead [2012].
Therefore we can write any physically reasonable wave function in time as:

ψ (t) =
1
C

�
dsdl

s2
ψ̂slφsl (t) (26)

And include space by using products of Morlet wavelets:

ψ (t, x) =
1
C2

�
dstdlt
s2t

dsxdlx
s2x

ψ̂stltsxlxφstlt (x)φsxlx (x) (27)

Clearly it would be cumbersome to track four dimensional Morlet wavelets
at every step.

Fortunately we do not need to actually perform the Morlet wavelet analyses:
we merely need the ability to do so. As each Morlet wavelet may be written as a
sum of a pair of Gaussians, Morlet wavelet analysis lets us write any physically
reasonable wave function as a sum over Gaussians. Provided we are dealing
only with linear operations – the case throughout here – we can work directly
with Gaussian test functions. By Morlet wavelet analysis the results will then
be valid for any physically reasonable wave functions.

2.5 Lagrangian

To sum over the paths – to construct the path integral – we will need to weight
each path by the exponential of the action, where the action is defined as the
integral of the Lagrangian over the laboratory time:

e
ı

T�

0

dτL(xµ,ẋµ)

(28)

We require a Lagrangian which:

1. Is manifestly covariant,

2. Produces the correct classical equations of motion,
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3. And gives the correct Schrödinger equation.

We would further prefer a Lagrangian which is the same for both SQM and
TQM. This will let us argue that we are treating SQM and TQM with the most
complete possible equality.

Somewhat surprisingly such a Lagrangian exists. In Goldstein's well-known
text on classical mechanics Goldstein [1980] we find:

L (xµ, ẋµ) = −1
2
mẋµẋµ − qẋµAµ (x) (29)

The potentials are not themselves functions of the laboratory time τ .
This Lagrangian is unusual in that it uses four independent variables (the

usual three space coordinates plus a time variable) but still gives the familiar
classical equations of motion (see B).

This Lagrangian therefore provides a natural bridge from a three to a four
dimensional picture.

The classical equations of motion are still produced if we add a dimensionless
scale a and an additive constant b to the Lagrangian:

−1
2
amẋµẋµ − aqẋµAµ (x)− ab

m

2
(30)

The Lagrangian is therefore only determined up to a and b. The requirement
that we match the SQM results will fix a and b (subsection 3.3).

2.6 Convergence

How do we get the sums to converge without breaking covariance?
We compute the path integral for the kernel by slicing the clock time into

an infinite number of intervals and integrating over each:

KBA = lim
N→∞

CN

� n=N∏
n=1

dtnd~xne
ıε

N+1∑
j=1

Lj

(31)

with CN an appropriate normalization factor.
Consider the discrete form of the Lagrangian. We use a tilde to mark the

coordinate time part and an overbar to mark the space part:

Lj ≡ L̃tj + L̄~xj + Lmj (32)

L̃tj ≡ −a
m

2

(
tj − tj−1

ε

)2

− qa
tj − tj−1

ε

Φ (xj) + Φ (xj−1)
2

(33)

L̄~xj ≡ a
m

2

(
~xj − ~xj−1

ε

)2

+ qa
~xj − ~xj−1

ε
·
~A (xj) + ~A (xj−1)

2
(34)

Lmj ≡ −abm
2

(35)
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We are using the mid-point rule, averaging the scalar and the vector potentials
over the start and end points of the step, by analogy with the rule for three di-
mensions (Schulman, Grosche and Steiner Schulman [1981], Grosche and Steiner
[1998]).

Now look at a single step for the free case, vector potential Aµ zero:

∞�

−∞

∞�

−∞

dtjd~xe
−ıam (tj−tj−1)

2

2ε +ıam
(~xj−~xj−1)

2

2ε (36)

The formal tricks normally used to ensure convergence do not work here (e.g.
Kashiwa or Zinn-Justin Kashiwa et al. [1997], Zinn-Justin [2005]). Perhaps the
most popular of these is the use of Wick rotation to shift to a Euclidean time:

τ → −ıτ (37)

This causes integrals to converge rapidly going into the future, but makes
the past inaccessible. For instance, factors of exp (−ıωτ) – which spring up
everywhere in path integrals – converge going into the future, but blow up
going into the past. If we are to treat time on the same footing as space – our
central assumption – then past and future must be treated as symmetrically as
left and right.

Another approach is to add a small convergence factor at a cleverly chosen
spot in the arguments of the exponentials. But if we attach a convergence
factor to t and x separately, we break manifest covariance. If we attach our
convergence factor to both, the fact that the t and x parts enter with opposite
sign means any convergence factor that works for one will fail for the other. We
could try attaching one to the mass m, but this also fails. For instance if a > 0
and we subtract a small factor of ıδ from the mass:

m→ m− ıδ (38)

the t integral converges but the x integral diverges.
We recall the kernel has meaning only when applied to a specific physical

wave function. If we break the incoming wave up into Morlet wavelets and then
into Gaussian test functions, we see that each integral converges by inspection,
the factor e−

1
2 ( t−l

s )2

ensures this.
So for physically significant wave functions, there is no problem in the first

place. Effectively we are taking seriously the point that the path integral kernel
is a distribution, only meaningful with respect to specific wave functions.

2.7 Normalization

Now that we have our path integrals converging, we have to normalize them. If
we start from the Schrödinger equation, the normalization is wired in. But in
path integrals we are a bit at sea.

We will here deal with the free case, verifying the normalization is correct
in the general case in D.
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The normalization factor for N steps we will call CN . The defining require-
ment is that, if the initial wave function is normalized to one, then with the
inclusion of CN , the final wave function will be normalized to one as well:

�
dt0d~x0

∣∣∣ψ0(t0, ~x0)
2
∣∣∣ = 1 →

�
dtNd~xN

∣∣∣ψN (tN , ~xN )2
∣∣∣ = 1 (39)

If CN depends on the particular ψ0, then we have failed.
We now compute the factor of CN .

Normalization in time We start with the coordinate time dimension only.
Consider a Gaussian test function centered on an initial position in coordinate
time t̄0:

ϕ̃0 (t0) ≡ 4

√
1
πσ2

t

e
−ıE0t0−

(t0−t̄0)2

2σ2
t (40)

We write the kernel for the time part as:

K̃τ (tN , t0) ∼
� N∏

j=1

dtje
−ıam

N∑
k=1

(tk−tk−1)
2

2ε

(41)

The wave function after the initial integral over t0 is:

ϕ̃ε (t1) =
�
dt0e

−ı am
2ε (t1−t0)2 ϕ̃0 (t0) (42)

or:

ϕε (t1) =

√
2πε
ıam

4

√
1
πσ2

0

√
1

f
(t)
ε

e
−ıE0t1+ı

E2
0

2am ε− 1

2σ2
0

f
(t)
ε

(t1−t̄0− E0
am ε)2

(43)

with the dispersion factor f (t)
τ ≡ 1− ı τ

mσ2
t
.

The normalization requirement is:

1 =
�
dt1ϕ̃

∗
ε (t1) ϕ̃ε (t1) (44)

The first step normalization is correct if we multiply the kernel by a factor of√
ıam
2πε . Since this normalization factor does not depend on the laboratory time

the overall normalization for N infinitesimal kernels is the product of N of these
factors:

CN ≡
√
ıam

2πε

N

(45)

Note also that the normalization does not depend on the specifics of the Gaus-
sian test function (the values of E0, σ2

t , and t̄0) so it is valid for an arbitrary
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sum of Gaussian test functions as well. And therefore, by Morlet wavelet de-
composition, for an arbitrary wave function.

As noted, the phase is arbitrary. If we were working the other way, from
Schrödinger equation to path integral, the phase would be determined by the
Schrödinger equation itself. The specific phase choice we are making here has
been chosen to help ensure the four dimensional Schrödinger equation is man-
ifestly covariant, see below. We may think of the phase choice as a choice of
gauge (see E).

Therefore the expression for the free kernel in coordinate time is (with t′′ ≡
tN , t′ ≡ t0):

K̃τ (t′′; t′) =
�
dt1dt2 . . . dtN

√
ıam

2πε

N

e
−ı

N∑
j=1

( am
2ε (tj−tj−1)

2)
(46)

Doing the integrals we get:

K̃τ (t′′; t′) =
√
ıam

2πτ
e−ıam

(t′′−t′)2

2τ (47)

and free wave functions in coordinate time:

ϕ̃τ (t) = 4

√
1
πσ2

t

√
1

f
(t)
τ

e
−ıE0t− 1

2σ2
t

f
(t)
τ

(t−t̄0− E0
am τ)2

+ı
E2

0
2am τ

(48)

Normalization in space We redo the analysis for coordinate time for space.
We use the correspondences:

t→ x,m→ −m, t̄0 → x̄0, E0 → −p0, σ
2
t → σ2

x (49)

With these we can write down the equivalent set of results by inspection. Since
we will need the results below, we do this explicitly. We get the initial Gaussian
test function:

ϕ̄0 (x0) = 4

√
1
πσ2

x

e
ıp0x0−

(x0−x̄0)2

2σ2
x (50)

free kernel:

K̄τ (x′′;x′) ∼
�
dx1dx2 . . . dxNe

ı
N∑

j=1

am
2ε (xj−xj−1)

2

(51)

normalization constant: √
2ıπε
am

→
√

2πε
ıam

(52)

and normalized kernel:
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K̄τ (x′′;x′) =
√
− ıam

2πτ
eıam

(x′′−x′)2

2τ (53)

The kernel matches the usual (non-relativistic) kernel Feynman and Hibbs
[1965], Schulman [1981] if a = 1.

The wave function is:

ϕ̄τ (x) = 4

√
1
πσ2

x

√
1

f
(x)
τ

e
ıp0x− 1

2σ2
xf

(x)
τ

(x−x̄0−
p0
am τ)2−ı

p2
0

2am τ
(54)

with the definition of the dispersion factor f (x)
τ = 1 + ı τ

mσ2
x

parallel to that
for coordinate time (but with opposite sign for the imaginary part).

Normalization in time and space The full kernel is the product of the
coordinate time kernel, the three space kernels, and the constant term e−ı

abm
2 τ .

We understand x to refer to coordinate time and all three space dimensions:

Kτ (x′′;x′) = −ı a
2m2

4π2τ2
e−

ıam
2τ (x′′−x′)2−ı abm

2 τ (55)

We have done the analysis only for Gaussian test functions, but by Morlet
wavelet decomposition it is completely general.

2.8 Formal expression

We now have the full path integral:

Kτ (x′′;x′) = lim
N→∞

�
Dxe

ı
N+1∑
j=1

Ljε

(56)

with the measure:

Dx ≡
(
−ı m2

4π2a2ε2

)N+1 n=N∏
n=1

d4xn (57)

and the discretized Lagrangian at each step:

Lj ≡ −am
(xj − xj−1)

2

2ε2
− aq

xj − xj−1

ε

A (xj) +A (xj−1)
2

− b
m

2
(58)

We will show that a = b = 1 in the next section.
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3 Schrödinger equation

3.1 Overview

The path integral and Schrödinger equation views are complementary. We need
both to fully understand either.

We derive the Schrödinger equation from the path integral by taking the
short time limit of the path integral form.

By comparing the result to the Klein-Gordon equation – and making a rea-
sonable assumption about the long time evolution of the wave functions – we
are able to fix the additive and scale constants in the Lagrangian.

The resulting equation looks like the Klein-Gordon equation over short times
but shows some drift over longer times. We use some heuristic arguments to
estimate the scale of the long term drift as of order picoseconds, a million
times longer than the attosecond scale of the time dispersions we are primarily
concerned with here. We will therefore be able to largely ignore this drift.

With a, b defined, we look at a further problem. We have done the derivation
of path integral and Schrödinger equation forms from Alice's perspective. But
what of Bob, jetting around like a fusion powered mosquito?

We resolve this conflict by arguing that we can find a natural rest frame
that both can use. Starting with an argument of Weinberg's, we argue we
can associate an energy-momentum tensor with spacetime. This means we can
associate a local rest frame with spacetime. And this local rest frame can provide
the neutral and agreed defining frame for TQM.

This will complete the formal development of TQM.

3.2 Derivation of the Schrödinger equation

Normally the path integral expression is derived from the Schrödinger equation.
But because for us the path integral provides the defining formulation we need
to run the analysis in the “wrong” direction.

Our starting point is a derivation of the path integral from the Schrödinger
equation by Schulman Schulman [1981]. We run his derivation in reverse and
with one extra dimension.

We start with the discrete form of the path integral. We consider a single
step of length ε, taking ε→ 0 at the end. Because of this, only terms first order
in ε are needed.

Following Schulman, we define the coordinate difference:

ξ ≡ xj − xj+1 (59)

We rewrite the functions of xj as functions of ξ and xj+1. We expand the vector
potential:

Aν (xj) = Aν (xj+1) + (ξµ∂µ)Aν (xj+1) + . . . (60)

and the wave function:
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ψτ (xj) = ψτ (xj+1) + (ξµ∂µ)ψτ (xj+1) +
1
2
ξµξν∂µ∂νψτ (xj+1) + . . . (61)

giving:

ψτ+ε (xj+1) =
√

ıam
2πε

√
− ıam

2πε

3 �
d4ξe−

ıamξ2

2ε −ıabm
2 ε

×eıaqξ
ν(Aν(xj+1)+

1
2 (ξµ∂µ)Aν(xj+1)+...)

×
(
ψτ (xj+1) + (ξµ∂µ)ψτ (xj+1) + 1

2ξ
µξν∂µ∂νψτ (xj+1) + . . .

) (62)

We now expand in powers of ξ ∼
√
ε. We do not need more than the second

power:

ψτ+ε (xj+1) =
√

ıam
2πε

√
− ıam

2πε

3 �
d4ξe−

ıamξ2

2ε

×
(
1 + ıaqξνAν (xj+1) + ıaq

2 ξ
νξµ∂µAν (xj+1)− a2q2

2 ξµAµ (xj+1) ξνAν (xj+1)− ıabmε2

)
×
(
ψτ (xj+1) + (ξµ∂µ)ψτ (xj+1) + 1

2ξ
µξν∂µ∂νψτ (xj+1) + . . .

)
(63)

The term zeroth order in ξ gives:

√
ıam

2πε

√
− ıam

2πε

3 �
dξ4e−

ıamξ2

2ε =
√
ıam

2πε

√
− ıam

2πε

3√
2πε
ıam

√
2πε
−ıam

3

= 1 (64)

This is not surprising; the normalization above was chosen to do this.
Terms linear in ξ give zero when integrated. The terms second order in ξ

(first in ε) are:(
−ıabmε2 + ıaq (ξνAν) (ξµ∂µ) + ıaq

2 ξ
νξµ (∂µAν)

−a2q2

2 (ξµAµ) (ξνAν) + 1
2ξ
µξν∂µ∂ν

)
ψτ (65)

Integrals over off-diagonal powers of order ξ2 give zero. Integrals over diagonal
ξ2 terms give:

√
ıam
2πε

�
dξ0e

−
ıamξ2

0
2ε ξ20 = ε

ıam√
− ıam

2πε

�
dξie

ıamξ2
i

2ε ξ2i = − ε
ıam

(66)

The expression for the wave function is therefore:

ψτ+ε = ψτ−
ıabmε

2
ψτ+

qε

m
(Aµ∂µ)ψτ+

q

2m
ε (∂µAµ)ψτ+

ıaq2ε

2m
A2ψτ−

ıε

2ma
∂2ψτ

(67)
Taking the limit ε → 0 and multiplying by ı, we get the Schrödinger equation
for TQM:
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ı
∂ψτ
∂τ

= ab
m

2
ψτ +

ıq

m
(Aµ∂µ)ψτ +

ıq

2m
(∂µAµ)ψτ −

aq2

2m
A2ψτ +

1
2ma

∂2ψτ (68)

or:

ı
∂ψτ
∂τ

(t, ~x) = − 1
2ma

(
(ı∂µ − aqAµ (t, ~x)) (ı∂µ − aqAµ (t, ~x))− a2bm2

)
ψτ (t, ~x)

(69)
If we make the customary identifications ı ∂∂t → E, −ı~∇ → ~̂p or ı∂µ → pµ we
have:

ı
∂ψτ
∂τ

= − 1
2ma

(
(pµ − aqAµ) (pµ − aqAµ)− a2bm2

)
ψτ (70)

3.3 Long, slow approximation

We can now fix the scale and additive constants by looking at the behavior of
the Schrödinger equation over longer times.

In his development of quantum mechanics from a time-dependent perspective
Tannor [2007], Tannor used a requirement of constructive interference in time
to derive the Bohr condition for the allowed atomic orbitals. We use a similar
approach here.

If we average over a sufficiently long period of time, the results will be
dominated by the components with:

ı
∂ψτ (x)
∂τ

= 0 (71)

The argument here is not that the typical variation from the long, slow
solution is small, but rather that over time interactions with the system in
question will tend to be dominated by interactions with the stabler, slower
moving components. Interactions with more rapidly varying components will
tend to average to zero.

Accepting this, then the right side looks like the Klein-Gordon equation. To
complete this identification, first look at the case with the vector potential A
zero: (

p̂2 − a2bm2
)
ψ = 0 → a2b = 1 (72)

Now when A is not zero we have:(
(p̂− aqA)2 −m2

)
ψ = 0 → a = 1 → b = 1 (73)

We will refer to this as the “long, slow approximation”.
In the free case, the long, slow approximation picks out the on-shell compo-

nents:
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(
p̂2 −m2

)
ψ = 0 (74)

And more generally the solutions of the Klein-Gordon equation with the minimal
substitution p→ p− qA: (

(p̂− qA)2 −m2
)
ψ = 0 (75)

The two constants are now fixed. For the record, the full Schrödinger equa-
tion is:

ı
∂ψτ
∂τ

(t, ~x) = − 1
2m

(
(ı∂µ − qAµ (t, ~x)) (ı∂µ − qAµ (t, ~x))−m2

)
ψτ (t, ~x) (76)

and in momentum space:

ı
∂ψτ
∂τ

= − 1
2m

(
(pµ − qAµ) (pµ − qAµ)−m2

)
ψτ (77)

And the free Schrödinger equation is:

2mı
∂ψτ
∂τ

(t, ~x) =
(
∂µ∂

µ +m2
)
ψτ (t, ~x) (78)

and in momentum space:

2mı
∂ψτ
∂τ

= −
(
pµp

µ −m2
)
ψτ (t, ~x) (79)

3.4 How long and how slow?

We have argued that we can fix the scaling and additive constants by looking
at the behavior of the Schrödinger equation over long times. What do we mean
by long times?

To see the relevant scale, we estimate the clock frequency f :

f ∼ −E
2 − ~p2 −m2

2m
(80)

We will argue (subsection 4.1.2) that in the non-relativistic case E is of order
mass plus kinetic energy:

E ∼ m+
~p2

2m
(81)

So we have:

E2 − ~p2 −m2 ∼
(
m+

~p2

2m

)2

− ~p2 −m2 =
(
~p2

2m

)2

(82)

This is just the kinetic energy, squared. In an atom the kinetic energy is of
order the binding energy:
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~p2

2m
∼ eV (83)

So the numerator is of order eV squared. But the denominator is of order
MeV . So we can estimate the clock frequency f as:

f ∼ eV 2

MeV
∼ 10−6eV (84)

Energies of millionths of an electron volt 10−6eV correspond to times of
order millions of attoseconds 106as or picoseconds, a million times longer than
the natural time scale of the effects we are looking at. So the long, slow approx-
imation is reasonable.

3.5 Observer independent choice of frame

If we did the above derivation for Bob rather than Alice, we would see his clock
time τ → γτ where γ ≡ 1

/√
1− v2 where v is his velocity relative to hers.

We therefore have one free parameter left to fix before we can declare our
analysis free of free parameters.

We could argue that if Bob is not going that quickly, that the errors created
by not fixing the frame this will introduce only small corrections, which will be
of second order and therefore not relevant for falsifiability.

However establishing frame independence is interesting as a point of prin-
ciple. This may be done in a natural way by making use of an observation
from Weinberg Weinberg [1972]. Per Weinberg, we may treat the Einstein field
equation for general relativity as representing conservation of energy-momentum
when exchanges of energy momentum with spacetime are included.

Consider the Einstein field equations:

Gµν ≡ Rµν −
1
2
gµνR = −8πGTµν (85)

Rewrite as:

(Gµν + 8πGTµν);ν = 0 (86)

We may use this to associate an energy momentum tensor (tµν in Weinberg's
notation) with local space time. Define:

gµν = ηµν + hµν (87)

where hµν vanishes at infinity but is not assumed small. The part of the Ricci
tensor linear in h is:

R(1)
µν ≡

1
2

(
∂2hλλ
∂xµ∂xν

−
∂2hλµ
∂xλ∂xν

− ∂2hλν
∂xλ∂xµ

+
∂2hµν
∂xλ∂xλ

)
(88)
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The exact Einstein equations may be written as:

R(1)
µν −

1
2
ηµνR

(1)λ
λ = −8πG (Tµν + tµν) (89)

where tµν is defined by:

tµν ≡
1

8πG

(
Rµν −

1
2
gµνR

λ
λ −R(1)

µν +
1
2
ηµνR

(1)λ
λ

)
(90)

Weinberg argues we may interpret tµν as the energy-momentum of the gravita-
tional field itself.

We change to a coordinate frame in which tµν is diagonalized. We will refer
to this as the rest frame of the vacuum or the V frame. We can treat this
V frame as the defining frame for the four dimensional Schrödinger equation.
As the V frame is invariant (up to rotations in three-space) we now have an
invariant definition of the four dimensional Schrödinger equation.

This is obviously going to be a free-falling frame. So Alice and Bob – if they
are working in a terrestrial laboratory – will have to adjust their calculations
to include a correction for the upwards force the laboratory floor exerts against
them. If their colleague Vera is working in an orbiting laboratory, she will be
able to calculate without correction.

4 Free solutions

We now have the Schrödinger equation. What do its free solutions look like?
We examine in turn the birth, life, and death of a free particle. The cal-

culations are straightforward. But each stage will present problems specific to
TQM.

4.1 Initial wave function

What do our wave functions look like at start?
We have a chicken and egg problem here. Any initial wave function had

itself to come from somewhere. How can we estimate the initial wave functions
without first knowing them?

We look specifically at the Klein-Gordon equation for a static potential, one
with:

A0 = qΦ (~x) , ~A = 0 (91)

This includes the free case as the special case when Φ = 0.
In SQM the Klein-Gordon equation is:(

(ı∂τ − qΦ (~x))2 −∇2 −m2
)
ψ̄τ (x) = 0 (92)

In TQM the equivalent is the Schrödinger equation:
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ı
∂

∂τ
ψτ (t, ~x) = − 1

2m

(
(ı∂t − qΦ (~x))2 −∇2 −m2

)
ψτ (t, ~x) (93)

The long, slow approximation picks out the solutions with:(
(ı∂t − qΦ (~x))2 −∇2 −m2

)
ψτ (t, ~x) = 0 (94)

We will assume we are already in possession of solutions to the SQM version
of the problem. We can leverage the SQM solutions in two different ways to get
the TQM solution:

1. Separation of variables. Each SQM solution induces a TQM solution,
which is basically the SQM solution with a plane wave bolted on. This is
technically correct, but unphysical.

2. Maximum entropy. We can use the long, slow approximation to estimate
the mean and uncertainty of the coordinate energy. With these we can use
the method of Lagrange multipliers to get the maximum entropy solution.
Maximum entropy solutions tend to be robust: even if we are wrong about
the details, the order of magnitude should be correct. This will provide
our preferred starting point.

As a quick check on the sanity of all this, we will use the virial theorem to esti-
mate the TQM version of the atomic wave functions. The width in time/energy
of these matches the initial order of magnitude estimate we gave in the intro-
duction.

4.1.1 Solution by separation of variables

We consider the Klein-Gordon equation for potentials constant in time. We
assume the magnetic field is zero:((

E − V̄ (~x)
)2 − ~p2 −m2

)
ϕ (t, ~x) = 0 (95)

This includes attractive potentials as well as scattering potentials, provided they
are constant in time. Expanded, the equation is:(

− ∂2

∂t2
− 2V̄ (~x) ı

∂

∂t
+ V̄ (~x)2 − ~p2 −m2

)
ϕ (t, ~x) = 0 (96)

We solve this using separation of variables, looking for solutions of the form:

ϕ (t, ~x) = φ̃n (t) ϕ̄n (~x) (97)

We assume we have a solution for the standard Klein-Gordon equation:((
Ēn − V̄ (~x)

)2 − ~p2 −m2
)
ϕ̄n (~x) = 0 (98)

Then the coordinate time part is:
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φ̃n (t) =
1√
2π
e−ıĒnt (99)

Because the potential is constant in time each use of the operator E turns into
a constant En via:

E → ı
∂

∂t
→ Ēn (100)

We get immediately:((
Ēn − V̄ (~x)

)2 − ~p2 −m2
)
ϕn (t, ~x) = 0 (101)

So every solution of the Klein-Gordon equation in SQM generates a corre-
sponding solution in TQM.

We could accomplish the same thing, formally, by taking τ → t. Since we
expect in general that 〈t〉 ≈ τ (discussed further in the next section) this will
often a give reasonable first approximation.

However this is not entirely satisfactory. We have a solution which is “fuzzy”
in space, but “crisp” in time. A more realistic, if more complex solution, would
include off-shell components. Even if our wave function started out as a simple
plane wave in time, internal decoherence would rapidly turn it into something
a bit more cloud-like. While mathematically acceptable, our solution is not
physically plausible.

4.1.2 Solution by maximum entropy

The long, slow approximation picks out a single solution. But in practice we
expect there would be a great number of solutions, with the one given by the
long slow approximation merely the most typical.

Such a sum will have an associated probability density function. We can
get a reasonable first estimate of this by defining appropriate constraints and
then using the method of Lagrange multipliers to pick out the distribution with
maximum entropy.

From the probability density, we will infer the wave function.
We start with the free case, as representing the simplest case of a constant

potential. We treat the bound case below. We assume we are given the SQM
wave function in three dimensions φ̄ (~x).

We take as the constraints the norm, the expectation of the energy, and the
expectation of the energy squared:

〈1〉 = 1

Ē ≡ 〈E〉 =
√
m2 + 〈~p〉2〈

E2
〉

=
〈
m2 + ~p2

〉
= m2 +

〈
~p2
〉 (102)

The uncertainty in energy is defined as:

∆E ≡
√
〈E2〉 − 〈E〉2 (103)
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The expectations are defined as integrals over the probability density

〈f〉 ≡
�
d~pρ̄ (~p) f (~p) (104)

The constraints imply ∆E = ∆p.
We will work with box normalized energy eigenfunctions:

φn (t) ≡ 1√
2T

e−ıE0nt (105)

E0 ≡
π

T
(106)

where n is an integer running from negative infinity to positive and the eigen-
functions are confined to a box extending T seconds into the future and T
seconds into the past, where T is much larger than any time of interest to us.
(We use a similar approach in developing the four dimensional Fock space below,
subsection 7.3.2).

A general wave function can be written as:

ψ (t) =
∞∑

n=−∞
cnφn (t) (107)

The coefficients c only appear as the square:

ρn ≡ c∗ncn (108)

Expressed in this language we have the constraints:

C0 ≡
∞∑

n=−∞
ρn − 1 = 0

C1 ≡ E0

∞∑
n=−∞

nρn − 〈E〉 = 0

C2 ≡ E2
0

∞∑
n=−∞

n2ρn −
〈
E2
〉

= 0

(109)

We would like to find the solution that maximizes the entropy:

S ≡
∞∑

n=−∞
−ρn ln (ρn) (110)

We form the Lagrangian from the sum of the entropy and the constraints, with
Lagrange multipliers λ0, λ1, and λ2:

L ≡ S + λ0C0 + λ1C1 + λ2C2 (111)

To locate the configuration of maximum entropy, we take the derivative with
respect to the ρn:

∂L

∂ρn
= 0 (112)
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getting:

− ln ρn − 1 + λ0 + E0nλ1 + E2
0n

2λ2 = 0 (113)

Therefore the distribution of the ρn is given by an exponential with zeroth, first,
and second powers of the energy:

ρ (E) ∼ e−a−bE−cE
2

(114)

The constraints force the constants:

ρ (E) =
1√

2π∆E2
e−

(E−Ē)2

2∆E2 (115)

We therefore have the probability density in energy; now we wish to estimate
the corresponding wave function in energy (or equivalently time). There are two
distinct ways to do this. First for each value of the wave function in momentum,
we can posit an associated δ function in energy:

ϕ̂ (E, p) ∼ δ (E − Ep) ˆ̄ϕ (p) (116)

Ep ≡
√
m2 + p2 (117)

Or we can write the total wave function as the direct product of a wave function
in energy times the postulated wave function in momentum:

ϕ̂ (E, p) ∼ ˆ̃ϕ (E) ˆ̄ϕ (p) (118)

The first approach implies a detailed specification of the distribution of the
wave function in energy. If the wave function in momentum has a complex
shape, so too will the energy part. The second approach is significantly simpler
and therefore more robust.

We start with a Gaussian test function in momentum:

ˆ̄ϕ0 (p) = 4

√
1
πσ2

p

e
−ı(p−p0)x0−

(p−p0)2

2σ2
p (119)

With a corresponding wave function in space:

ϕ̄0 (x) = 4

√
1
πσ2

x

e
ıp0x−

(x−x0)2

2σ2
x (120)

The wave function in momentum implies by the arguments above a wave func-
tion of the form:

ˆ̃ϕ0 (E) = 4

√
1

πσ2
E

e
ı(E−E0)t0−

(E−E0)2

2σ2
E (121)

σ2
E = σ2

p (122)
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E0 =
√
m2 + p̄2 (123)

Taking the Fourier transform of the energy part we have:

ϕ̃0 (t) = 4

√
1
πσ2

t

e
−ıE0(t−t0)− t2

2σ2
t (124)

σ2
t =

1
σ2
E

(125)

We set t0 = 0 as the overall phase is already supplied by the space/momentum
part.

The full wave functions are the products of the coordinate time and space
(or energy and momentum) parts:

ϕ0 (t, x) = ϕ̃0 (t) ϕ̄0 (x) (126)

ϕ̂0 (E, p) = ˆ̃ϕ0 (E) ˆ̄ϕ0 (p) (127)

4.1.3 Bound state wave functions

We extend this approach to estimate the dispersion of a bound wave function
in time.

In the case of a Coulomb potential we can estimate ∆p from the virial
theorem: 〈

~p2

2m

〉
= −1

2
〈V 〉 (128)

which implies: 〈
~p2

2m

〉
+ 〈V 〉 = Ēn →

〈
~p2

2m

〉
= −Ēn (129)

Since the average momentum is zero, we have the estimate:

∆E =
√
−2mĒn (130)

Substituting the mass of the electron and the Rydberg constant, we have:

∆E =
√

2 · 13.6eV · (0.511 · 106) eV = 3728 eV (131)

And the corresponding dispersion in coordinate time is:

∆t =
h̄

∆E
= .1766as (132)

This matches the order of magnitude estimate we started with (subsection
1.1). The numerical closeness is coincidental, but does increase confidence the
order of magnitude is correct.
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4.2 Evolution of the free wave function

Now that we know what our starting wave functions look like, how do they
evolve over time?

For a first examination we work with the non-relativistic case; we will extend
to the relativistic case below (section 7). We will first look at the SQM case,
then look at the TQM case, and then compare the two.

4.2.1 Evolution in SQM

We first look at the familiar problem of the evolution of the non-relativistic wave
function with respect to clock time. We work with two dimensions – t, x – since
the extension to y, z is straightforward.

The non-relativistic Schrödinger equation is:

ı
∂

∂τ
ψ̄ =

p2

2m
ψ̄ = − ∂2

x

2m
ψ̄ (133)

At clock time zero we start with a Gaussian test function in momentum with
average position x0, average momentum p0, and dispersion in momentum σp.
To reduce clutter we are using p for px:

ˆ̄ϕ0 (p) = 4

√
1
πσ2

p

e
−ıpx0−

(p−p0)2

2σ2
p (134)

In momentum space the problem is trivial. The solution is:

ˆ̄ϕτ (p) = 4

√
1
πσ2

p

e
−ıpx0−

(p−p0)2

2σ2
p

−ı p2

2m τ
(135)

In coordinate space we get:

ϕ̄τ (x) = 4

√
1
πσ2

x

√
1

f
(x)
τ

e
ıp0x− 1

2σ2
xf

(x)
τ

(x−x̄0−
p0
m τ)2−ı

p2
0

2m τ
(136)

with:

σx =
1
σp

(137)

f (x)
τ = 1 + ı

τ

mσ2
x

(138)

4.2.2 Evolution in TQM

In two dimensions the Schrödinger equation for TQM is:

ı
∂ψτ
∂τ

(t, ~x) = −E
2 − p2 −m2

2m
ψτ (t, ~x) =

(
∂2
t

2m
− ∂2

x

2m
+
m

2

)
ψτ (t, ~x) (139)
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This looks much like the non-relativistic case, but with one extra space
dimension.

We start in energy momentum space. The momentum part is as above. We
start with a Gaussian test function in energy, with average time at start t0,
average energy E0, and dispersion in energy σE :

ˆ̃ϕ0 (E) ≡ 4

√
1

πσ2
E

e
ıEt0−

(E−E0)2

2σ2
E (140)

Again we merely push this forward in clock time:

ψ̂τ (E, p) = ˆ̃ϕ0 (E) ˆ̄ϕ0 (p) exp
(
−ıE

2 − p2 −m2

2m
τ

)
(141)

We divide up the pieces of the clock time part, assigning the E2

2m to the
energy part, the p2

2m to the momentum part, and keeping the third part outside:

ψ̂τ (E, p) = ˆ̃ϕτ (E) ˆ̄ϕτ (p) exp
(
ı
m

2
τ
)

(142)

Now the energy part works in parallel to the momentum part:

ˆ̃ϕτ (E) ≡ 4

√
1

πσ2
E

e
ıEt0−

(E−E0)2

2σ2
E

−ı
E2

0
2m τ

(143)

And in coordinate space:

ϕ̃τ (t) = 4

√
1
πσ2

t

√
1

f
(t)
τ

e
−ıE0t+ı

E2
0

2m τ− 1

2σ2
t

f
(t)
τ

(t−t0−E0
m τ)2

(144)

with ancillary definitions:

σE =
1
σt

(145)

f (t)
τ ≡ 1− ı

τ

mσ2
t

(146)

and with the expectation for coordinate time:

t̄τ = t̄0 +
E0

m
τ (147)

implying a velocity for coordinate time with respect to laboratory time:

v0 =
E0

m
(148)

We define as usual:

γ ≡ E

m
(149)
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And have in the non-relativistic case, γ ≈ 1. So the expectation of the
coordinate time advances at the traditional one-second-per-second rate relative
to the clock time.

4.2.3 Comparison of TQM to SQM

The TQM and SQM approaches develop in close parallel, with one peculiarity.
We are relying on the long, slow approximation. Especially over short times,

this means that the total wave function appears to be relatively static with
respect to evolution in clock time:

ı
∂

∂τ
ψ ≈ 0 (150)

In momentum space:

fp ≡ −
E2 − p2 −m2

2m
≈ 0 (151)

Real wave functions are not, of course, static with respect to clock time.
The resolution is that most of the clock time dependence is carried by the

coordinate time:

d

dτ
ψ =

∂

∂τ
ψ +

dt

dτ

∂

∂t
ψ ≈ dt

dτ

∂

∂t
ψ (152)

And in the non-relativistic case we have:

dt

dτ
=
E

m
≈ 1 (153)

So we get as a rough approximation:

d

dτ
ψ ≈ ∂

∂t
ψ (154)

We see that the expectation of the coordinate time is about equal to the
clock time. While Alice's dog is always getting ahead of and behind her, on
average his position is about equal to hers:

〈t〉 ≈ τ (155)

4.3 Time of arrival measurements

So we know what our wave function looks at at start and how it evolves with
time. To complete the analysis of the free case we look how it is detected.

We look specifically at the measurement of time-of-arrival. We assume we
have a particle going left to right, starting at x = 0. We place a detector at
position x = L. It records when it detects the particle. The metric we are
primarily interested in is the dispersion in time-of-arrival at the detector.
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Source Detector Source Detector Source Detector Source Detector

Simple Paths Return from far side Return from future Arbitrarily complex

Figure 3: Complex paths near the detector

In SQM, if a detector located at position X registers a hit by a particle
we take the particle's position in space as also x = X. Therefore in TQM, if
detector active at laboratory time T registers a hit by a particle we must take
the particle's position in time as t = T . This is required by our principle of
maximum symmetry between time and space.

By the same token, in SQM if an emitter located at position X emits a
particle, we take the start position of the path as x = X. Therefore in TQM, if
an emitter active at laboratory time T emits a particle, we must take the start
position in coordinate time as t = T .

In a practical treatment we would replace the phrases “at X” or “at T” with
“within the range X ± ∆X

2 ” and “within the range T ± ∆T
2 ”.

If we know both source and detector positions in space and time then all
corresponding paths are clamped at both ends. In between source and detector
the paths can examine all sorts of interesting times and spaces but each path
is clamped at the endpoints. Alice and her dog leave from the same starting
point in space time and arrive at the same ending point in space time, but while
classical Alice takes the shortest path between the start and end points, the
quantum dog explores all paths.

And this implies paths in TQM are much more complex than those in SQM.
If a detector is a camera shutter, open for a fraction of a second, then any
paths that arrive early or late will merely be “eaten” by the closed shutter. But
what if our apparatus can somehow be toggled from transparent to absorptive
and back, as via “electromagnetically induced transparency”Fleischhauer et al.
[2005]? Then the paths can arrive early but then circle back, or arrive late but
circle forward, or even perform a drunkard's walk around the detector till they
choose to fall into it.

Since we are primarily interested in comparisons of TQM to SQM, rather
than in fully exploring the elaborations of TQM, we will focus on the camera
shutter model. Paths that arrive before the shutter is open or after the shutter
is closed again will be silently absorbed by the camera itself. We defer to a later
investigation examination of more complex paths.
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4.3.1 Metrics

With that dealt with, to compute the dispersion in time, we log how many hits
we get in each time interval (“clicks per tick”):

ρ (τ) (156)

then calculate the average:

〈τ〉 ≡
∞�

−∞

dτρ (τ) (157)

and the uncertainty:

〈∆τ〉2 ≡
∞�

−∞

dττ2ρ (τ)− 〈τ〉2 (158)

4.3.2 Time of arrival in SQM

x
Source Detector

TQM

TQM

SQM

SQM
CM

Figure 4: Time of arrival

We start with a particle with initial position x = 0 and with average mo-
mentum (in the x direction) of p0. We will assume that the initial dispersion in
momentum is small. We have the wave function from above. The probability
density is then:

ρ̄τ (x) ≡ |ϕ̄τ (x)|2 =

√√√√ 1

πσ2
x

∣∣∣f (x)
τ

∣∣∣2 e
−

(x− p0
m

τ)2

σ2
x|f(x)

τ |2 (159)

To get the dispersion in time, we integrate over possible detection times.
We expand around the time the wave function is most likely to cross the

plane of the detector:
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τ̄D ≡
mLD
p0

=
LD
v

(160)

At τ̄ we can write x as x = x̄+ δx. We can turn this around, and write:

τD = τ̄D + δτD (161)

Or to lowest order in δτ :

δx = −vdδτ (162)

We expand the numerator in the exponential in powers of δτ :

ρ̄τ (L) ≈
√√√√ 1

πσ2
x

∣∣∣f (x)
τ

∣∣∣2 e
− (vδτ)2

σ2
x|f(x)

τ |2 (163)

And the denominator to second order in powers of δτ :

σ2
x

∣∣∣f (x)
τ

∣∣∣2 = σ2
x +

τ2

m2σ2
x

= σ2
x +

(τ̄ + δτ)2

m2σ2
x

≈ (τ̄ + δτ)2

m2σ2
x

≈ τ̄2

m2σ2
x

(164)

Giving:

ρ̄δτ ≈
√
v2m2σ2

x

πτ̄2
e−

v2m2σ2
x

τ̄2 (δτ)2 (165)

We define an effective dispersion in time:

σ̄τ ≡
1

mvσx
τ̄ (166)

And the probability of detection as:

ρ̄δτ =

√
1
πσ̄2

τ

e
− (δτ)2

σ̄2
τ (167)

This is correctly normalized to one, centered on τ = τ̄ , and with uncertainty:

∆τ =
1√
2
σ̄τ (168)

Particularly important is the inverse dependence on the velocity. Intuitively
if we have a slow moving (non-relativistic) particle, it will take a long time to
pass through the plane of the detector, causing the associated uncertainty in
time to be relatively large.
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Comparison to a time-of-arrival operator As a cross-check, we compare
our treatment to the time-of-arrival operator analysis in Muga and Leavens
Muga and Leavens [2000] (who are following Kijowski Kijowski [1974]). They
give a probability density in time of:

ρ (τ) =

∣∣∣∣∣∣
∞�

0

dp

√
p

m
e−ı

p2τ
2m ˆ̄ϕ (p) exp (ıpL)

∣∣∣∣∣∣
2

+

∣∣∣∣∣∣
0�

−∞

dp

√
−p
m
e−ı

p2τ
2m ˆ̄ϕ (p) exp (−ıpL)

∣∣∣∣∣∣
2

(169)
where ˆ̄ϕ is an arbitrary momentum space wave function normalized to one.
Assume:

p0 � σp (170)

so:

p ≈ p0 (171)

If our wave functions are closely centered on p, the term with negative mo-
mentum can be dropped or even flipped in sign without effect on the value of
the integral. Further, by comparison to the exponential part, the term under
the square root is roughly constant:√

p

m
≈
√
p0

m
(172)

So we may replace Muga and Leaven's expression by the simpler:

ρ (τ) ≈ p0

m

∣∣∣∣∣∣
∞�

−∞

dpe−ı
p2τ
2m ˆ̄ϕ (p) exp (ıpL)

∣∣∣∣∣∣
2

(173)

As the contents of the integral are the Fourier transform of the (clock) time
dependent momentum space wave function, it is the clock time dependent space
wave function at x = L:

ρ (τ) ≈ p0

m
|ϕ̄τ (L)|2 (174)

And the rest of the analysis proceeds as above.

4.3.3 Time of arrival in TQM

It is striking that there is considerable uncertainty in time even when time is
treated classically. Our hypothesized uncertainty in time will be added to this
pre-existing uncertainty.

Using the time wave function from above we have for the probability density
in time:
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ρ̃τ (t) =

√√√√ 1

πσ2
t

∣∣∣f (t)
τ

∣∣∣2 e
− 1

σ2
t |f(t)

τ |2
(t−τ)2

(175)

We multiply by the space part from above to get the full probability density:

ρD (t, LD) = ρ̃D (t) ρ̄D (LD) (176)

If t were replaced by space dimension y, we would have no doubt as to how to
proceed. To get the overall uncertainty in y we would integrate over clock time

(∆y)2 =
�
dy (y − ȳ)2

�
dτρτ (y) ρ̄τ (LD) (177)

Therefore we write (taking y → t):

(∆t)2 =
�
dt (t− τ̄)2

�
dτ ρ̃τ (t) ρ̄τ (LD) (178)

This is a convolution of clock time with coordinate time. To solve we first invoke
the same approximations as above:

σ2
t

∣∣∣f (t)
τ

∣∣∣2 = σ2
t + τ2

m2σ2
t

= σ2
t + (τ̄+δτ)2

m2σ2
t
≈ (τ̄+δτ)2

m2σ2
t
≈ τ̄2

m2σ2
t

σ̃τ ≡ τ̄
mσt

ρ̃τ (t) ≈
√

1
πσ̃2

τ
e
− 1

σ̃2
τ

(t−τ)2
(179)

So we have for the full probability distribution in t:

ρτ̄ (t) ≡
�
dτ
√

1
πσ̃2

τ
e
− 1

σ̃2
τ

(t−τ)2√ 1
πσ̄2

τ
e
− 1

σ̄2
τ

(τ−τ̄)2

(∆t)2 =
�
dt (t− τ̄)2 ρτ̄ (t)

(180)

The convolution over τ is trivial giving:

ρτ̄ (t) =

√
1
πσ2

τ

e
− (t−τ̄)2

σ2
τ (181)

We therefore have for the total uncertainty at the detector:

σ2
τ = σ̃2

τ + σ̄2
τ (182)

So the dispersion in time is the sum of the dispersions from the time and
the space parts. This is intuitively reasonable. Restating the definitions for the
two dispersions:

σ̄2
τ = τ̄2

m2v2σ2
x

σ2
t ≈ τ̄2

m2σ2
t

(183)
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From the long, slow approximation, we would expect particle wave functions
to have initial uncertainties in energy/time comparable to their uncertainties
in momentum/space. σt ∼ σx. But the conventional contribution has an addi-
tional 1

v in it. Since in the non-relativistic case, v � 1 the total uncertainty will
be dominated by the space part.

This helps to explain why dispersion in time has not been seen by accident.
It also motivates an exploration of the relativistic case, where the effects of
dispersion in time should be at least comparable to the effects of dispersion in
space (section 7).

5 Semi-classical approximation

5.1 Overview

In the path integral formulation of quantum mechanics, the semi-classical in-
terpretation provides a natural bridge between the classical and the quantum
pictures. Essentially it is the stationary phase approximation applied to path
integrals.

In the stationary phase approximation we expand the path integral around
the path where the action is varying mostly slowly. This is the path where at
each point on the path we have:

δL
δq

= 0 (184)

where q stands for whatever set of coordinates we are using. This is basically
the trick for integrating over a Gaussian by expanding the integral around the
“hump”, the spot in the integral where the Gaussian is varying most slowly. In
path integrals we do this for an infinite number of coordinate points, one set of
coordinates for each tick of clock time, but the idea is the same (see Zee Zee
[2010] for a particularly amusing development of this idea).

But this condition is also the defining condition of the classical path. So the
stationary phase approximation is an expansion around the classical path.

If we look at a river valley, the classical path corresponds to the path carved
out by the moving water. The slopes of the valley around the river correspond
to the quantum fluctuations around the classical path.

So standard quantum mechanics is classical mechanics plus slopes in the
three space dimensions. And temporal quantum mechanics is standard quantum
mechanics plus the slopes in the time dimension. TQM is to SQM – with respect
to time – as SQM is to CM with respect to the three space dimensions.

In the rest of this section we will:

1. extend the usual derivation of the semi-classical approximation to include
coordinate time,

2. apply the semi-classical approximation to the free case (as a calibration
exercise),
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3. apply it to the case of a constant magnetic field,

4. and apply it to the case of a constant electric field.

The comparison of the last two cases exposes a subtle failure of duality in SQM.
In classical mechanics, the electric and magnetic fields are dual. By exchanging
time and a space coordinate we can interchange results for the electric and
magnetic fields. But in SQM a full interchange of time and a space coordinate
is not possible because quantum fluctuations in time are not permitted. We will
see this explicitly when we compare the magnetic and electric cases.

5.2 Derivation of the semi-classical approximation

We now extend the familiar stationary phase approximation in SQM path inte-
grals to TQM.

We rewrite the coordinates in the Lagrangian in 58 as xj = x̄j + δxj . We
define x̄ by the requirement that the first variation with respect to x be zero:

0 = −m
(
x̄µ

j
−x̄µ

j−1
ε2

)
+m

(
x̄µ

j+1−x̄
µ
j

ε2

)
− q

2ε (Aµ (x̄j−1)−Aµ (x̄j+1))− q
2ε

(
x̄νj+1 − x̄νj−1

) ∂Aν(x̄j)

∂xj
µ

(185)

In the continuum limit this gives the classical equations of motion (B):

mẍµj = −q
dAµj
dτ

+q
dxνj
dτ

∂Aν (xj)
∂xjµ

= −q

(
∂Aµ (xj)
∂xjν

− ∂Aν (xj)
∂xjµ

)
dxνj
dτ

= qFµν (xj) ẋνj

(186)
We therefore identify x̄ as the classical path. The full expression for the

kernel is:

Kτ (x′′;x′) =
�
Dx exp

ıε j=N+1∑
j=1

(
L̄j +

1
2

∂2L̄j
∂δx∂δx

δxδx+O (δx)3
) (187)

with:

L̄j ≡ −
m

2

(
x̄j − x̄j−1

ε

)2

− e
x̄j − x̄j−1

ε

(
A (x̄j) +A (x̄j−1)

2

)
− m

2
ε (188)

We now drop the cubic and higher terms. This is the semi-classical approx-
imation. Including only terms through the quadratic we get:

Kτ (x′′;x′) ≈ Fτ (x′′;x′) K̄τ (x′′;x′) (189)

with:
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K̄τ (x′′;x′) = exp

ıε j=N+1∑
j=1

L̄j

→ exp
(
ıS(classical)
τ

)
(190)

and fluctuation factor F :

Fτ (x′′;x′) ≡
�
Dx exp

ıε j=N+1∑
j=1

1
2

∂2L̄j
∂δxµ∂δxν

δxµδxν

 (191)

The fluctuation factor can be computed in terms of the action and its deriva-
tives. The derivation is nontrivial. It is done in the one dimensional case
in Schulman Schulman [1981] and in one dimension and higher dimensions in
Kleinert Kleinert [2009]. Fortunately Kleinert's derivation is independent of the
number of space dimensions. We up this from three to four, treating coordinate
time as a fourth space dimension x4. With derivation complete we replace x4

with ıt.

Fτ (x′′;x′) =
1

√
2π

4

√
det
(
−∂

2Sτ (x′′;x′)
∂x′∂x′′

)
(192)

With final result:

Kτ (x′′;x′) ≈ 1
√

2π
4

√
det
(
−∂

2Sτ (x′′;x′)
∂x′∂x′′

)
exp (ıSτ (x′′;x′)) (193)

The exp
(
ıS

(classical)
τ

)
represents the river valley and corresponds directly

to the classical case. The fluctuation factor accounts for the valley slopes, for
the quantum fluctuations around the classical path.

The semi-classical approximation is exact when there are no third order
terms.

5.3 Free propagator

The semi-classical approximation is arguably the simplest way to derive the free
propagator. Since the free Lagrangian has no terms higher than quadratic, the
semi-classical approximation is exact.

Lagrangian:

L (x, ẋ) = −m
2
ẋ2 − m

2
(194)

Euler-Lagrange equation:

mẍ = 0 (195)

The classical path is a straight line from start to finish:
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xτ ′ =
∆x
τ
τ ′ + x (196)

The Lagrangian along the classical path is a constant:

L = −m
2

(
∆x
τ

)2

− m

2
(197)

Action:

S = −m
2τ

(∆x)2 − m

2
τ (198)

Determinant of the action:

det
(
−∂

2S (x′′;x′)
∂x′′∂x′

)
= −m

4

τ4
(199)

And full kernel:

Kτ (x′′;x′) = − m2

4π2τ2
exp

(
− ım

2τ
(x′′ − x′)2 − ı

m

2
τ
)

(200)

We can plug this into the defining equation for the kernel to confirm we have
our signs and factors right:

(
2mı

∂

∂τ
−
(
∂µ∂

µ +m2
))

Kτ (x′′;x′) θ (τ) = δ (x′′ − x′) δ (τ) (201)

A table of the free kernels is assembled in F.

5.4 Constant magnetic field

One of the advantages of TQM is a more complete symmetry between the treat-
ments of magnetic and electric cases. We treat the magnetic field first.

Consider a constant magnetic field in the z direction: ~B = (0, 0, B) with
vector potential ~A = (0, Bx, 0). We ignore the mass term, which can be gauged
away. The Lagrangian is then:

L = −m
2
ṫ2 +

m

2
~̇x

2
+
q

2
Bẏx (202)

The kernel splits up into t and z pieces, which are just the free kernels, and
an x, y piece, which is the standard magnetic kernel:

Kτ (t′, x′, y′, z′; t, x, y, z) = K̃(free)
τ (t′; t) K̄(free)

τ (z′; z) K̄(mag)
τ (x′, y′;x, y)

(203)
We define the Larmor frequency:

ω ≡ qB

m
(204)
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Kleinert Kleinert [2009] takes advantage of the formal resemblance of the
magnetic part to the harmonic oscillator to compute the classical action:

S(mag)
τ (x′, y′;x, y) =

m

2

(ω
2

cot
(ωτ

2

)(
(∆x)2 + (∆y)2

)
+ ω (xy′ − x′y)

)
(205)

Giving fluctuation factor (in two dimensions):

det

(
−∂

′∂S
(mag)
τ

∂x′∂x

)
= − ı

4π
mω

sin
(
ωτ
2

) (206)

And full kernel:

K(mag)
τ (x′, y′;x, y) = − ı

4π
mω

sin
(
ωτ
2

) exp
(
ıS(mag)
τ (x′, y′;x, y)

)
(207)

As a quick check, we note we recover the free form in the limit ω → 0.
Note that the TQM and SQM kernels are fully equivalent. The changes in

TQM relate to the time part, which is factored out.

5.5 Constant electric field

Next consider a constant electric field in the x direction: ~E = (E, 0, 0) with
electric potential Φ = −Ex or in four dimensional notation A = (−Ex, 0, 0, 0).
The Lagrangian is now:

L = −mṫ
2

2
+
m

2
~̇x

2
+
qE

2
ṫx (208)

The kernel factors as before:

Kτ (t′, x′, y′, z′; t, x, y, z) = K̄(free)
τ (y′, z′; y, z)K(elec)

τ (t′, x′; t, x) (209)

We define, analogously to the Larmor frequency:

α ≡ qE

m
(210)

The integrals are formally equivalent to the magnetic case with the substi-
tutions:

y → −ıt
t→ ıy
ω → ıα

(211)

This will be recognized as a variation on the duality of the electric and
magnetic fields, which in turn comes from the ability to rotate space and time
into each other in special relativity.
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Therefore we can write the action, fluctuation factor, and kernel by inspec-
tion:

S(elec)
τ (t′, x′; t′, x′) =

m

2

(α
2

coth
(ατ

2

)(
− (∆t)2 + (∆x)2

)
+ α (xt′ − x′t)

)
(212)

Again the fluctuation factor for the electric part comes from the determinant
of a two by two matrix:

det

(
−
∂′′∂′S

(elec)
τ ′′τ ′

∂x′′∂x′

)
=
m2α2

4

(
− coth2

(
α∆τ

2

)
+ 1
)

= − m2α2

4 sinh2
(
α∆τ

2

)
(213)

K
(elec)
τ ′′τ ′ (t′′, x′′; t′, x′) =

mα

4π sinh
(
α∆τ

2

) exp
(
ıS

(elec)
τ ′′τ ′ (t′′, x′′; t′, x′)

)
(214)

The limit as α→ 0 should give the free kernel. Again, easily verified.
There are various ways to set this problem up in SQM. But in all of them

the paths must integrated only over the x coordinate and therefore may only
include quantum fluctuations in one dimension rather than two.

Since the fluctuation factor for SQM for the magnetic field includes two
dimensions and the fluctuation factor for SQM for the electric field includes
only one dimension the two can’t match. In SQM duality necessarily fails at
the quantum level.

5.6 Discussion

The failure of duality in SQM is not a surprise. The duality of the electric and
magnetic fields follows from special relativity. TQM by construction respects
this fully; SQM does not. Given that the electric fields are the time-space
components of the Fµν tensor, while the magnetic fields correspond to the space-
space components of F , it is clear that given the special handling of time in SQM
means transformations between the two will be problematic.

This in turn means that duality provides another way to produce experimen-
tal tests of TQM. For instance, we could look at variations on the Aharonov-
Bohm effect, especially those involving time-dependent electric fields: Aharonov
and Bohm [1959], Weder [2011a,b].

6 Single and double slit experiments

6.1 Overview

The single slit in time experiment provides the decisive test of temporal quantum
mechanics. In SQM, the narrower the slit, the less the dispersion in subsequent
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time-of-arrival measurements. In TQM, the narrower the slit, the greater the
subsequent dispersion in subsequent time-of-arrival measurements. In principle,
the difference may be made arbitrarily great.

This distinction follows directly from the fundamental principles of quantum
mechanics. Picture a quantum wave function going through a gate in space.
If the gate is wide, diffraction by the edges is minimal and the subsequent
broadening of the wave function minimal. The gate will clip the beam around
the edges and that will be about it. But if the gate is narrow, then the wave
function will spread in a nearly circular pattern and the subsequent broadening
will be arbitrarily great.

In terms of the uncertainty principle, the gate represents a measurement of
the position. The narrower the gate, the less the uncertainty at the gate. If
∆y is small, then ∆py must be correspondingly large and the resulting spread
greater at the detector. As ∆y → 0 ⇒ ∆py → ∞. But a large ∆py implies –
with a bit of time – a large spread at the detector.

We translate this from space to time. One way to visualize a gate in time
is as a very fast camera shutter. The faster the shutter the smaller ∆t and
correspondingly the greater ∆E. The greater ∆E, the greater the dispersion in
velocities and the greater the dispersion in time-of-arrival at the detector.

But – as always in this investigation – there are complicating factors.
First, in space we can make the gate entirely perpendicular to the beam.

Beam traveling in x, gate in y. The beam can start with zero momentum in
the y direction, letting the x momentum act as a carrier. But there is no such
thing as a particle that does not have at least some momentum in time, i.e.
energy. We can’t achieve a complete separation between the direction of the
measurement and of the beam (but see below 7.8.4).

Second, if ∆E gets large enough, we will begin to move into the relativistic
zone. Our dispersion in ∆E will be curbed by relativistic constraints.

Third, to the best of our knowledge the problem of passage through a single
or double slit has not even been exactly solved in SQM. The problem does not
get simpler in TQM.

Finally, it is not enough to work out what the rules are for TQM; we have
to do so in a way that makes comparisons to SQM straightforward.

There is already a significant literature on the “in time” versions of the
single and double slit experiments. The investigation of this problem started
over sixty years ago with Moshinsky Moshinsky [1951, 1952] and continues, with
a recent review by Gerhard and Paulus Gerhard G. Paulus [2009]. Particularly
interesting for our purposes are treatments of scattering of wave functions, as
Umul Umul [2009] and Marchewka and Schuss Marchewka and Schuss [1998,
1999].

The approach we take here will be the simplest that still foregrounds the
essential problems. For the single slit problem, we will focus on a beam moving
from left to right in the x direction, going through a very fast camera shutter,
and arriving at a detector. The distribution of detections in clock time will give
us the dispersion in time-of-arrival, which is the key measurement.

We will ignore paths that loop back and forth through the gate. Most
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elementary treatments make this assumption of a single passage (for an analysis
of the effects of multiple passages of a gate see Yabuki, Raedt, and SawantYabuki
[1986], De Raedt et al. [2012], Sawant et al. [2014]).

We will also, following Feynman and Hibbs Feynman and Hibbs [1965], take
the gate as having a Gaussian shape, rather then turning on and off instantly.
This results in the wave functions at the detector also being Gaussian in shape.
With a sharp edged gate, the wave functions at the detector become sums of
error functions, and significantly more complex.

We will treat the SQM case first, describing the beam using the px basis.
When we turn to the TQM case we will use the SQM beam as a carrier, with
the TQM wave function in time orthogonal to it. This makes the SQM/TQM
comparison as direct as possible.

We conclude the analysis with an brief examination of the double slit in
time. Here the differences between SQM and TQM are subtler and therefore
less interesting.

6.2 Single slit with time a parameter

Source Gate Detector

W

Clipped

Unclipped

Unclipped

Clipped

A

B

Figure 5: Single slit with time a parameter

We start by calculating the effects of a single slit in time on the dispersion
of time-of-arrival measurements in SQM.

We start with a wave function in x:

ϕ̄τ (x) = 4

√
1
πσ2

x

√
1

f
(x)
τ

e
ıp0x− 1

2σ2
xf

(x)
τ

(x−x0−
p0
m τ)2−ı

p2
0

2m τ
(215)

or in p:

ˆ̄ϕτ (p) = 4

√
1
πσ2

p

e
−ıpx0−

(p−p0)2

2σ2
p

−ı p2

2m τ
(216)

We take the velocity v ≡ p0
m . We assume the particle is non-relativistic so

that v � 1.
The gate is located at x = B, centered on clock time A, with width in time

W :

48



Gτ = e−
(τ−A)2

2W2 (217)

For simplicity we center the particle beam on the gate. If τ̄G is the average
time at which the particle reaches the gate, we arrange it so that:

τG = A (218)

This gives:

v =
B

A
(219)

With the detector at position x = L, we define T as the average time at
which the particle is detected:

T ≡ vL (220)

The evolution of the wave function is simplest in the p basis, but the gate
defined in τ basis. To switch back and forth between these two points of view
we define:

p = p0 + δp = mv + δp
τ = τ̄ + δτ

(221)

We assume that the incoming wave function can be treated as a sum of p
rays. This worked in the time-of-arrival case, has the merit of simplicity, and
lets us make a direct comparison between TQM and SQM. And this lets us
change the basis from p→ τ and back using:

p = m
x

τ
(222)

We assume the beam is reasonably well-focused and use a para-axial approx-
imation, to quadratic order:

δp = m x
τ̄+δτ −mx

τ̄ ≈ mx
τ̄

(
− δτ

τ̄ + δτ2

τ̄2

)
δτ = m x

p0+δp
−m x

p0
≈ x

v

(
− δp
p0

+ δp2

p20

) (223)

At the gate, the wave function in p space is:

ˆ̄ϕG(−) (p) = 4

√
1
πσ2

p

e
− (δp)2

2σ2
p
−ı p2

2m τG

(224)

In τ space:

ϕ̄G(−) (δτ) = 4

√
1

πσ2
G

e
− δτ2

2σ2
G

−ı 1
2m ( mB

A+δτ )2
(A+δτ)

= 4

√
1

πσ2
G

e
− δτ2

2σ2
G

−ımB2
2A

(
1− δτ

A + δτ2

A2

)
(225)
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with σG defined by:

δτ

σG
k = − δp

σp
→ σG = −δτ

δp
σp = A

σp
p0

(226)

For the SQM case, we assume no diffraction in time: the wave function will
be clipped by the gate, not diffracted. This means we must multiply the wave
function by the gate function:

ϕ̄G(+) (δτ) = e−
(δτ)2

2W2 ϕ̄G(−) (δτ) (227)

Now we convert back to p space, but on the far side of the gate:

ˆ̄ϕG(+) (p) = 4

√
1
πσ2

p

e
− δp2

2σ2
p
− A2

2W2
δp2

p2
0
−ı p2

2m τG

(228)

Evolve to detector:

ˆ̄ϕD (p) = 4

√
1
πσ2

p

e
− δp2

2σ2
p
− A2

2Σ2
δp2

p2
0
−ı p2

2m τD

(229)

Switch back to τ space in the same way as at the gate. The significant
change is from σp → σ′p where the primed dispersion in p is a kind of average
of the original dispersion in p and the width of the gate:

1
(σ′p)

2 =
1
σ2
p

+
A2

W 2

1
p2
0

(230)

With this we can write out the wave function at the detector by inspection,
first in p space:

ˆ̄ϕD (p) = 4

√
1
πσ2

p

e
− δp2

(σ′p)2
−ı p2

2m τD

(231)

then in τ space:

ϕ̄D (δτ) = 4

√
1

πσ2
G

e
− δτ2

(σ′G)2
−ımL2

2T

(
1− δτ

T + δτ2

T2

)
(232)

with the primed dispersion in clock time given by:

σ′G ≡ T
σ′p
p0

(233)

The dispersion in clock time at the detector is basically a scaled version of
the dispersion in momentum post gate.

Note the factor 4

√
1

πσ2
G

is unchanged. The ratio:(
σ′G
σG

)2

(234)
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tells us what percentage of the particles get through the gate. But this does
not effect the calculation of the dispersion, which is normalized. The width of
the gate in momentum space is:

Wp ≡W
p0

A
(235)

Therefore the effective dispersion of the wave function in clock time is:

(σ′G)2 =
T 2

p2
0

(
σ2
pW

2
p

σ2
p +W 2

p

)
(236)

When the gate is wide open, the dispersion at the detector is defined by the
initial dispersion of the beam:

Wp →∞⇒ σ′G → σp (237)

But when the gate is much narrower than the beam, the dispersion at the
detector is defined by the width of the gate:

Wp → 0 ⇒ σ′G →Wp (238)

The key point is that the narrower the gate, the narrower the beam. While
the approximations we have used have been simple, this is a fundamental im-
plication of the SQM view of time, of time as classical. In SQM, wave functions
are not, by assumption, diffracted by a gate, they are clipped. And therefore
their dispersion in time must be reduced by the gate rather than increased by
it.

6.3 Single slit with time an observable

We now have a baseline from SQM; we turn to the single slit in time in TQM
using the SQM treatment as a starting point.

Clipped

Diffracted

Diffracted

Clipped

B

AW

Source Gate Detector

Figure 6: Single slit with time an observable

For TQM, we start with a wave function factored in time and momentum:

ψτ (t) = ϕ̃τ (t) ˆ̄ϕτ (p) (239)
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We are treating the p part as a carrier, using the wave function from above.
The momentum part will be unchanged throughout.

By assumption, the gate will act only on the time part:

G̃t = e−
(t−A)2

2W2 (240)

We take the particle as starting with t0 = 0. The wave function pre-gate is:

ϕ̃τ (t) = 4

√
1
πσ2

t

√
1

f
(t)
τ

e
−ıE0t+ı

E2
0

2m τ− 1

2σ2
t

f
(t)
τ

(t−t0−E0
m τ)2

(241)

We will again take the particle as non-relativistic: E0 such that E0
m ≈ 1.

On arrival at the gate the wave function is:

ϕ̃G(−) (tG) = 4

√
1
πσ2

t

√
1

f
(t)
G

exp

−ıE0tG −
(tG −A)2

2σ2
t

(
1− ı A

mσ2
t

) + ı
p2
0

2m
A

 (242)

Post gate:

ϕ̃G(+) (tG) = e−
(tG−A)2

2W2 ϕ̃G(−) (tG) (243)

The effect of the gate on the wave function is to rescale it:

1

2σ2
t

(
1− ı A

mσ2
t

) → 1
2W 2

+
1

2σ2
t

(
1− ı A

mσ2
t

) (244)

We define rescaling functions g2 and h by:

1
W 2

+
1

σ2
t

(
1− ı A

mσ2
t

) =
1

g2σ2
t

(
1− ı h

mσ2
t

) (245)

We have by inspection:

W → 0 ⇒ g → W
σt
, h→ 0

W →∞⇒ g → 1, h→ A
(246)

In between these limits, we equate real and imaginary parts to get:

g2 (W,σ,A) =
W 2

σ2
t

(
A2

m2 + σ2
t (σ

2
t +W 2)

)
(
A2

m2 + (σ2
t +W 2)2

) (247)

h (W,σ,A) = A
σ2
tW

2

A2

m2 + σ4
t + σ2

tW
2

(248)

This in turn gives us the t wave function at the detector. We replace σt and
τG in the initial wave function by g and h:
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ϕ̃D (tD) = N 4

√
1
πσ2

t

√
1
fG
e
−ıE0tD− 1

2g2σ2
t

f′
D

(tD−t̄D)2+ı
p2
0

2m τD

(249)

f ′D ≡ 1− ı
h+ (T −A)

mσ2
t

(250)

As the gate opens up entirely, as W → ∞, we recover the wave function
with no gate, as expected:

g → 1
h+ T −A→ T
ϕ̄′D → ϕ̄D

(251)

But as W → 0 we have:

σtg →W
h→ 0 (252)

Effectively the post gate wave function looks like an initial wave function with
width in time A; the gate resets the wave function. We can reapply the analysis
from above (subsection 4.3.2) to get:

(∆t)2 =
(

1
2W 2

+
1

2σ̄2
τ

)
τ̄2

m2
(253)

Therefore:

1. In SQM the uncertainty in clock time is proportional to the width of the
gate.

2. In TQM the uncertainty in clock time is inversely proportional to the
width of the gate.

These effects are results of the fundamental assumptions. In SQM, time is a
parameter and the gate must clip the incoming wave function. In TQM, time
is an operator and the gate must diffract the incoming wave function.

Therefore the observable effect may be made, in principle, arbitrarily large.

6.4 Double slit in time

The double slit experiment has been described by Feynman Feynman et al.
[1965] as the “central mystery” of quantum mechanics. There have been many
tests of the double slit experiment; the double slit in time variation has been
done by Lindner et al Lindner et al. [2005].

The double slit in time experiment is less useful here: both TQM and SQM
give the same spacing of peaks and valleys at the detector.

We start with the analysis in Gerhard and Paulus Gerhard G. Paulus [2009].
They consider a setup where two Gaussian wave packets are “born” at the same
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Figure 7: Double slit in time

position, but one at a time ∆T after the other. They consider wave packets
with zero group velocity; we consider packets with group velocity p0

m .
We assume the source emits a Gaussian wave packet at time zero then at

time ∆T later emits a second Gaussian wave packet with the same shape but
with overall phase Φ relative to the first.

Focusing on the time dependence, the two wave packets may be written in
momentum space as:

ˆ̄ϕ0 (p) e−ı
p2

2m τ (254)

and:

ˆ̄ϕ∆T (p) e−ı
p2

2m (τ−∆T )−ıΦ (255)

The initial relative phase between the two is:

eı
p2
0

2m ∆T−ıΦ (256)

The dependence of the phase on clock time for each is the same:

e−ı
p2

2m τ (257)

Therefore there is no additional interference in TQM beyond that resulting
from the initial phase difference, already accounted for in SQM.

The interference pattern will therefore have the same spacing. Each of the
peaks will be a bit wider, but that effect is already accounted for in the analysis
of the time-of-arrival for a free particle. It is the single not the double slit
experiment which provides the decisive test of TQM.

7 Multiple particles

“In what follows we assume that even though A = δm is formally
divergent, it is still `small´ in the sense that it is of the order of 1/137
times the electron mass.” – Sakurai Sakurai [1967]
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7.1 Why look at the multiple particle case?

In principle, we have enough to falsify TQM. Why then look at the multiple
particle case?

1. From the above we see the effects of TQM will be largest at relativistic
velocities and short times. This implies we need to look at high energies
and, since high energies imply particle creation, at the multiple particle
case. (We thank Dr. Steve Libby for bringing this point to our attention.)

2. There is the further concern that TQM may not be renormalizable. If the
loop integrals in SQM are barely renormalizable, with the addition of one
more dimension the loop integrals in TQM may well become completely
intractable.

3. Extending TQM to the multiple particle case opens up some new effects.

4. And then there is of course the intrinsic interest of the question.

At the same time, there are formidable difficulties: the literature on quantum
field theory is vast and complex (among the references we have found helpful are
Bjorken and Drell [1965a,b], Roman [1969], Rivers [1987], Ramond [1990], Kaku
[1993], Peskin and Schroeder [1995], Weinberg [1995a], Huang [1998], Weinberg
[1995b], Itzykson and Zuber [2005], Maggiore [2005], Zee [2010], Nazarov and
Danon [2013], Das [2014], Lancaster and Blundell [2014], Horwitz [2015]).

As a practical matter, we can’t extend this literature from SQM to TQM in
a single paper. Frankly, we doubt we could properly analyze a single realistic
experiment except in a paper approaching the length of this one. Further if we
tried, we might very well lose sight of the essential principles in the course of
looking at detector efficiencies, recovery times, and the like.

Instead we will focus on analyzing a toy model in a series of toy situations –
but in a way that will make clear how to extend the toy model to more realistic
and useful cases.

To extend TQM from the single to the multiple particle case we will deploy
our third requirement: consistency between the single particle and multiple
particle domains.

Consider the set of Feynman diagrams associated with any specific problem.
We will use the same set of Feynman diagrams in TQM as in SQM. For each
diagram we will replace the SQM free propagators with TQM free propagators,
replace the SQM initial wave functions with TQM wave functions, but other-
wise leave matters unchanged. To compare TQM to SQM we will walk the
calculations from start time to detection, looking at various questions as they
arise.

With this approach the parallelism between the single and multiple particle
cases is obvious: we use the same free propagator for each, but in the multiple
particle case we treat a richer and more detailed set of interactions.

Since the complications of spin are inessential here, we will look at a simple
model with three massive spinless particles A, B, and C (correspondingly very
loosely to the electron, photon, and proton).
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As in the single particle case, we will first work out the rules for the various
pieces of the path integral, then apply these rules to a few simple cases. There
is of course no possibility of covering all cases, but we will do enough to make
clear how to extend the approach to an arbitrary problem. Steps:

1. Extend Fock space from 3D to 4D.

2. Reuse the existing field theory Lagrangian densities by interpreting the
time as the coordinate time.

3. Compute the action by integrating over both clock and coordinate times,
so that the integrals over the Lagrangian density goes from

�
dτd~x →�

dτdtd~x.

4. Verify that the free particle propagator computed with this approach
matches the single particle free particle propagator.

5. Compare the SQM and TQM approaches for:

(a) Emission of a particle,

(b) Absorption of a particle,

(c) Exchange of a particle,

(d) Loop correction to the mass.

This last calculation provides a preliminary success for TQM. If treated naively,
the loop diagrams in TQM are divergent. But the combination of Morlet wavelet
decomposition and entanglement in time – neither alone sufficient – causes the
loop integrals to converge.

As we develop the multiple particle case, we will see a number of additional
effects:

1. anti-symmetry in time,

2. correlations in time (Bell's theorem in time),

3. forces of anticipation and regret.

With the approach taken here we have no free or adjustable parameters. We
have a simple transition from single to multiple particle treatment. We do
not have the familiar ultraviolet divergences. And we have a large number of
opportunities for experimental test.

7.2 ABC model

The simplest model we can find that lets us cover the basic interactions has
three spinless, massive particle species A, B, and C. We assign them non-zero
masses m, µ, and M respectively. We will take µ as small as it needs to be.
They are real fields. A's emit and absorb B's with amplitude λ. C's emit and
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Figure 8: Interactions in the ABC model

absorb B's with amplitude Λ. A's and C's do not talk with each other directly.
There are no other interactions.

Loosely, A is a spinless model of an electron, B of a photon, and C of a
proton.

We will focus primarily on the A and B particles. We will need the C for
the discussion of particle exchange.

7.3 Fock space

In the single particle case we generalized the wave functions from three dimen-
sions to four. Here we generalize Fock space from three dimensions to four. As
paths may be seen as a series of wave functions, one wave function per clock
tick, this implicitly generalizes the associated paths from three dimensions to
four as well.

We start using box normalization. The box runs from −L → L in all four
coordinates: coordinate time and the three space dimensions. It is taken to
extend well past the wavelets we are working with.

Using box normalization means that the Fourier transforms will be discrete.
Discrete Fourier transforms are convenient for discussing various points of prin-
ciple and to help in visualizing the field theory calculations. For the actual
calculations we will use continuous wave functions.

In general the extrusion from three to four dimensions is straight forward; a
few specific points require attention.

7.3.1 Fock space in three dimensions

x LL

T

0
0

a

space

Clock time

Figure 9: Fock space in three dimensions
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Single particle basis wave functions We will focus on the x coordinate
here; y and z are the same.

We break our box into 2M pieces, implying a lattice spacing a ≡ L
M . a has

dimensions of length.
This lets us replace the smoothly varying x with the values of x at a series

of points:

x ∈ [−L,L] → x = (−aM, . . . , 0 . . . , aM) (258)

The continuous/discrete translation table is:

(x, y, z) ↔ (ai, aj, ak) (259)

We are using i with a dot for the index, ı without a dot for the square root
of -1.

Integrals over space go to sums over i, j, k:

L�

−L

dxdydz ↔ a3
M∑

i,j,k=−M

(260)

The coordinate basis is trivial, just Kronecker δ functions:

φ~x′ (~x) ≡ δ3 (~x− ~x′) ↔ δii′δjj′δkk′ (261)

We assume the wave functions are periodic in 2L. The periodic condition is
not important; L will be chosen large enough that all interesting wave functions
are well inside of it. They will be trivially periodic because they are zero on
both sides of each dimension.

We normalize the basis wave functions to one:

L,L,L�

−L,−L,−L

d~xφ∗~k (~x)φ~k′ (~x) = δ~k~k′ (262)

Giving:

φ~k (~x) =
1

√
2L

3 exp
(
ı~k · ~x

)
(263)

Now we can expand an arbitrary wave function in terms of the basis func-
tions:

φ (~x) =
∑
~k

c~kφ~k (~x) (264)

The measure in the path integrals is in terms of the c's, not the basis func-
tions:
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Dφ ≡
N∏
n=0

Dnφ,Dnφ ≡
∏
~k

dc~k (265)

so there is one set of space integrals at each clock tick.
At the end of the discrete part of the calculation we will be letting M , N ,

and L go to infinity. As the effects of TQM are averaged out over larger times
we will not be letting T go to infinity, even in the SQM case.

In the continuum limit we have:

φ~k (~x) → 1
√

2π
3 exp

(
ı~k · ~x

)
(266)

Multi-particle wave functions Things become interesting when we go to
multiple particle wave functions. For two particles:

φ~k~k′ (1, 2) ≡ 1√
2

(
φ~k (1)φ~k′ (2) + φ~k (2)φ~k′ (1)

)
(267)

As we get to larger and larger numbers of particles, these wave functions
become tricky to write out and manage. To simplify, we use the familiar anni-
hilation and creation operators, defined by:

a†~k

∣∣n~k〉 =
√
n~k + 1

∣∣n~k + 1
〉

a~k
∣∣n~k〉 = √

n~k
∣∣n~k − 1

〉 (268)

with the usual commutation operators:[
a~k, a

†
~k′

]
= δ~k~k′ (269)

We define the single particle operator:

φ̄ (~x) =
∑
~k

a~kφ̄
†
~k

(~x) + a†~k
φ̄~k (~x) (270)

An arbitrary multiple particle basis state may be built up by products of
these: ∣∣{n~k}〉 =

1√∏
~k

n~k!

∏
~k

(
a†~k

)n~k |0〉 (271)

where
{
n~k
}

is a specific set of occupation numbers.
We define the general wave function in the occupation number basis:∑

{n~k}
c{n~k}

∣∣{n~k}〉 (272)

with normalization:
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1 =
∑
{n~k}

c2{n~k} (273)

Note we are not defining the creation and annihilation operators in terms
of an infinite set of harmonic oscillators; we are defining them by their effects
on Fock space. We can think of movement in Fock space as a giant game of
snakes and ladders, with the creation operators as the ladders, the annihilation
operators as the snakes.

7.3.2 Fock space in four dimensions

Clock time

space x LL

T

0
0

a

Coordinate time t

L

L

a

Figure 10: Fock space in four dimensions

Single particle basis wave functions The development in TQM works
along the same lines but with one more dimension t and a fourth index h. We
are treating coordinate time essentially like a fourth spatial dimension, much
like the x4 ≡ ıct trick of earlier works on special relativity (or our derivation of
the semi-classical approximation in 5.2). Paths in TQM will typically start at
τ = 0 and finish at some defined clock time τ = T . But their paths in coordinate
time may well dive before t = 0 and roam past t = T . To make sure that all of
the relevant paths are included in our box, we require that −L� 0 and L� T .
Using the same L for time as for space, and requiring that L→∞ accomplishes
this.

The continuous/discrete translation table is now:

(t, x, y, z) ↔ (ah, ai, aj, ak) (274)

So we have:

t = ah (275)

Note there is no requirement that the lattice spacing a in coordinate time t
match the step spacing ε in clock time τ ; in fact in general we will have: a 6= ε.

We promote integrals and sums over three dimensions to integrals and sums
over four:
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�
d~x→

�
dtd~x,

∑
ijk

fijk →
∑
hijk

fhijk (276)

φx′ (x) ≡ δ4 (x− x′) ↔ δhh′δii′δjj′δkk′ (277)

The k's are again periodic. We need to think for a moment about how our
wave functions get their start in life. At clock time zero, the TQM wave function
will look something like:

ϕ̃0 (t) ∼ exp

(
− (t− t0)

2

2σ2
t

)
(278)

One subtlety: we always develop our wave functions from τ = 0 → τ = T .
Consider the wave function at τ = 0. How did it get there? what of its past?
Won’t at some time the wave function have existed before −L, before the box
appeared? The working answer is that the shape of the wave function at τ = 0
tells us all we need to know of its history before that time. If the wave function
at τ = 0 is well within the box, if σt � L, we have what we need. What
happened in the past, stays in the past.

We normalize the basis wave functions to one:

L,L,L,L�

−L,−L,−L,−L

dtd~xφ∗k (t, ~x)φk′ (t, ~x) = δkk′ (279)

Giving:

φk (x) =
1

4L2
exp (−ıkx) (280)

Now we can expand an arbitrary wave function in terms of the basis func-
tions:

φ (x) =
∑
k

ckφk (x) (281)

Again, the measure in the path integrals is in terms of the c's, not the basis
functions:

Dφ ≡
N∏
n=0

Dnφ,Dnφ ≡
∏
k

dck (282)

so there is one set of time and space integrals at each clock tick.
Again, at the end of the discrete part of the calculation we will be letting

M , N , and L go to infinity. And we will not be letting T go to infinity.
In the continuum limit we have:

φk (x) → 1
4π2

exp
(
−ıwt+ ı~k · ~x

)
(283)
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Multiple particle wave functions Symmetrization in four dimensions works
exactly as in three. For two particles we have:

φkk′ (1, 2) ≡ 1√
2

(φk (1)φk′ (2) + φk (2)φk′ (1)) (284)

And the creation and annihilation operators work in the same way:

a†k |nk〉 =
√
nk + 1 |nk + 1〉

ak |nk〉 =
√
nk |nk − 1〉 (285)

With the commutators: [
ak, a

†
k′

]
= δkk′ (286)

Single particle operator:

φ (x) =
∑
k

akφ
†
k (x) + a†kφk (x) (287)

Arbitrary multiple particle:

|{nk}〉 =
1√∏
k

nk!

∏
k

(
a†k

)nk

|0〉 (288)

where {nk} is a specific set of occupation numbers, now over all possibilities
in four dimensions.

And we again define the general wave function as a sum over all possible
{nk}: ∑

{nk}

c{nk} |{nk}〉 (289)

with normalization condition:

1 =
∑
{nk}

c2{nk} (290)

This defines the Fock space in four dimensions, along the same lines as the
one in three. We are again playing snakes and ladders, but with four dimensional
snakes and ladders rather than three.

7.3.3 Anti-symmetry in time

We assume the same overall symmetry properties are required in four dimensions
as in three. This implies that wave functions can use the coordinate time to help
meet their symmetry responsibilities, with potentially amusing implications. In
particular if the wave function is anti-symmetric in time, it will have the “wrong”
symmetry properties in space.
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This is testable, at least in principle.
Say we have wide wave functions in time and space A (t) and B (x), and

narrow wave functions in time and space a (t) and b (x). The particles are
identified as 1 and 2.

An acceptable initial wave function is:

ϕsym (1, 2) =
1√
2

(A1B1a2b2 +A2B2a1b1) (291)

This clearly has the right symmetry between particles 1 and 2.
We wish to break this down into sums over products of wave functions in

time and space.
The symmetrical basis functions in time and space are:

ϕ̃sym (1, 2) = 1√
2

(A1a2 +A2a1)
ϕ̄sym (1, 2) = 1√

2
(B1b2 +B2b1)

(292)

If we use these as a product we get:

ϕ̃sym (1, 2) ϕ̄sym (1, 2) =
1
2

(A1B1a2b2 +A1B2a2b1 +A2B1a1b2 +A2B2a1b1)

(293)
where the two middle terms do not belong.
The anti-symmetric basis functions in time and space are:

ϕ̃anti (1, 2) = 1√
2

(A1a2 −A2a1)
ϕ̄anti (1, 2) = 1√

2
(B1b2 −B2B1)

(294)

and their product is:

ϕ̃anti (1, 2) ϕ̄anti (1, 2) =
1
2

(A1B1a2b2 −A1B2a2b1 −A2B1a1b2 +A2B2a1b1)

(295)
Therefore the sum of the completely symmetric and the completely anti-

symmetric gives the target wave function:

ϕsym (1, 2) =
1
2

(ϕ̃sym (1, 2) ϕ̄sym (1, 2) + ϕ̃anti (1, 2) ϕ̄anti (1, 2)) (296)

To get a wave function which is completely symmetric in time and space
together we need to use both the symmetric and the anti-symmetric basis func-
tions.
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7.4 Lagrangian

What should we use as a Lagrangian? We will look at this first from a classical
perspective.

In SQM the Lagrangian for a massive spin 0 free particle is given by:

L̄free
[
φ, φ̇

]
=

1
2
∂φ

∂τ

∂φ

∂τ
− 1

2
∇φ∇φ− m2

2
φ2 (297)

In classical mechanics, the wave functions may be written as sums over the
basis plane waves:

φτ (~x) ∼
∑
~k

cτ,~kφτ,~k (~x) (298)

The action is the integral of this over space and clock time:

T�

0

dτd~xL̄free
[
φ, φ̇

]
(299)

Typically we let the limits in clock time go to ±∞, usually somewhere near
the end of the analysis. Here that would average out the effects of any dispersion
in time. So just as in the definition of Fock space, we keep the total clock time
finite.

How to extend this Lagrangian to include coordinate time?
By our first requirement, x and t have to rotate into each other under a

Lorentz transformation. The only way to do this is to change clock time to
coordinate time: τ → t. So we start with:

Lfree [φ] =
1
2
∂tφ∂tφ−

1
2
∇φ∇φ− m2

2
φ2 (300)

The wave functions may be written as sums over the basis plane waves, with
all the clock time dependence in the coefficients c.

φτ (t, ~x) ∼
∑
k

cτ,kφk (t, ~x) (301)

Neither basis functions nor operators are functions of clock time. Therefore
the Lagrangian is not.

To include the dependence on clock time we will need to include the integral
over clock time from 0 to T :

S0 ∼
T�

0

dτ

�
dtd~xLfree [ϕ] (302)

We can write the Lagrangian in momentum space as:

∧Lfree ∼ w2 − ~k2 −m2

2
(303)
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The integral over clock time gives:

ı

�
dτ → ı

w2 − ~k2 −m2

2
(304)

This has two problems: it is not dimensionless and it does not match the
results for the single particle propagator. We can fix both by adding a factor of
1

2m :

ˆ̄L
(free)

→ 1
2m

(
1
2
∂tφ∂tφ−

1
2
∇φ∇φ− m2

2
φ2

)
(305)

This appears to give us an additional factor of 1
2 ; in fact that will nicely

cancel against a factor two created by normal ordering the operators, below.
With that noted, we will get the single particle propagator:

K̂ ∼ exp

(
ı
w2 − ~k2 −m2

2m
τ

)
(306)

Alternatively (and a bit less obtrusively) we can absorb a factor of 1
2m into

the normalization of the wave functions:
�
d4xφ∗k (x)φk′ (x) =

1
2m

δkk′ (307)

This parallels nicely the conventional normalization of the SQM wave func-
tions:

�
d~xφ̄∗~k (x) φ̄~k′ (x) =

1
2ω~k

δ~k~k′ ≈
1

2m
δ~k~k′ (308)

given that, at least in the non-relativistic case, we have ω~k ≡
√
m2 + ~k2 ≈ m.

For the AB particles together we have:

LAB [A,B] = Lfree [A] + Lfree [B]− λ

2
ABA (309)

And the extension to include C particles is obvious:

LABC [A,B,C] = LAB [A,B] + Lfree [C]− Λ
2
CBC (310)

Since there is no longer any explicit dependence on clock time in the TQM
Lagrangian, the corresponding Hamiltonian is merely −L, with the slightly
disconcerting result that there are no non-trivial canonical momenta.

In SQM the next step is to promote the classical fields to operators:

φ̄ (~x) →
∑
~k

a~kφ̄
†
~k

(~x) + a†~k
φ̄~k (~x) (311)

So in TQM we do the same:
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φ (x) →
∑
k

akφ
†
k (x) + a†kφk (x) (312)

7.5 Path integrals

With the Lagrangian defined, we can write the full kernel as:

KT ≡
�
Dφ exp

ı T�

0

dτ

�
d4xL [φ]

 (313)

This notation conceals much complexity. We start with the zero dimensional
free case.

7.5.1 Zero dimensional free case

aa

a†a†

space

Figure 11: Zigzag paths in clock time

The basis of wave functions for the zero dimensional case is the set of possible
occupation numbers from 0 to infinity. Any wave function may be written as a
sum over these:

ψ =
∞∑
l=0

cl |l〉 (314)

with the normalization condition that:

1 =
∞∑
l=0

c2l (315)

The corresponding wave function for a singleton is either just the number 1
or else 1√

2m
. If the former, then the wave function for all occupation numbers

is 1. If the latter, then we have:

φ2 =
1√
2!

(φ1 (1)φ1 (2) + φ1 (2)φ1 (1)) =

√
2!

2m
(316)
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φ3 =
1√
3!

(φ1 (1)φ1 (2)φ1 (3) + . . .) =

√
3!

√
2m

3 (317)

φl =

√
l!

√
2m

l
(318)

The various number states are orthogonal:

〈l | l′〉 = δll′ (319)

or:

〈l | l′〉 =
l!

(2m)l
(320)

The normalization of the wave functions will ultimately be absorbed into
the definition of the cl's, so is not that important.

The amplitude to go from one wave function to another is given by a Fock
space sandwich:

〈ψ′|KT |ψ〉 =

〈 ∞∑
l′=0

cl′φl′

∣∣∣∣∣
�
Dφ exp

ı T�

0

dτL

∣∣∣∣∣
∞∑
l=0

clφl

〉
(321)

With measure:

Dφ =
n=N−1∏
n=0

Dφ(n),Dφ(n) =
∞∏
l=0

dc
(n)
l (322)

And Lagrangian:

L = −1
2
(
a+ a†

)
φ1m

(
a+ a†

)
φ1 (323)

or if we are using the 1√
2m

normalization:

L = −1
4
(
a+ a†

)
φ1m

2
(
a+ a†

)
φ1 (324)

In either case we finish with four terms in the Lagrangian:

L = −m
4
(
aa+ aa† + a†a+ a†a†

)
(325)

each a pair of operators. Two terms change the particle numbers; two do not.
The term with two annihilation operators will reduce the number of particles by
two, the term with two creation operators will increase the number of particles
by two.

This means that even the simple free case has us moving up and down in
Fock space. We have to deal with populations of particles.
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We could accept this and solve using coherent states, possibly with a con-
straint to preserve normalization. This might be more consistent with the “spirit
of quantum mechanics” for which the notion of standalone particles is suspect.

But for a first investigation, we wish to develop TQM in a way that makes
the closest possible connection with existing treatments, even if it is overall less
satisfactory.

We proceed discretely:

exp

ı T�

0

dτL

→ exp

(
ıε

N∑
n=1

L

)
(326)

and one step at a time:

exp (ıεL) ≈ 1 + ıεL (327)

We will start with a common tactic: we will throw out all disconnected
diagrams. For instance at one clock tick an a†a† term could create a virtual
particle/anti-particle pair which a few clock ticks later an aa then deletes. These
represent self-interactions of the vacuum and are mere background noise, in
common across all diagrams.

We will also use normal ordering (“always annihilate before you create”):

1
2
(
aa† + a†a

)
→ a†a+

1
2

= n̂+
1
2

(328)

where n̂ is the number operator. The 1
2 term gives us an overall constant,

which we can also ignore, since it is also present for all diagrams.
Note we have just acquired a factor of two in the numerator which will cancel

the 1
2 we added in the last section.

There is a third problem; sometimes a particle can interact with a virtual
pair. The particle is evolving in clock time and encounters a term with two
annihilation operators. By chance, a particle in the vacuum encounters the
same term at the same clock tick. To an outside observer, it looks as if our
particle has reversed direction in clock time and is now headed backwards. This
is now a connected diagram, however, so the previous rules do not exclude it.

This is however implicitly included in our analysis of particle exchange below
– the middle part of the diagram is the exchanged particle. We will drop these
terms unless we explicitly need them, e.g. if we are looking at pair creation or
annihilation.

With this the Lagrangian reduces to a sum over number operators:

L → −ımn̂

2
= −ım

2

∞∑
l=0

lδll′ (329)

We return the infinitesimal Lagrangian to the exponential:
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exp

(
−ıε

N∑
n=1

m

2

∞∑
l=0

lδll′

)
(330)

and get:

Kτ (l; l′) = exp
(
−ım

2
lτ
)
δll′ (331)

which makes sense as the zero dimensional matrix element: if there are l particles
present, they oscillate l times as quickly as one.

7.5.2 Four dimensional free case

We now extend the zero dimensional treatment to four dimensions. Free La-
grangian:

Lfree [φ] =
1

2m
∂φ

∂t

∂φ

∂t
− 1

2m
∇φ∇φ− m2

2m
φ2 (332)

where φ is an operator:

φ (x) =
�
d4kâkφ

†
k (x) + â†kφk (x) (333)

Again the amplitude to go from one state to another is computed by con-
structing a Fock space sandwich:

Aε = 〈{nk′} | exp
(
ıε

�
d4xL [φ, ∂φ]

)
|{nk}〉 (334)

We will use as the single particle wave functions the exponentials φk (x) ≡
1

4π2 exp (−ıkx). In momentum space the partial derivatives ∂x turn into powers
of k. We have the overall integral over x and (from the transition to momentum
space) integrals over k and k′ for each of the two operators in each term. The
basis functions integrated over x give δ functions in k, k′. The integral over k’
gives an integral over k. We are left with something that looks like:

�
d4xφφ→

�
d4k

(
aka−k + aka

†
k + a†kak + a†ka

†
−k

)
(335)

This is the same as the zero dimensional case with an index k. All four terms
conserve momentum, but as before two terms change the particle numbers, two
do not.

We define the associated frequency:

fk ≡ −
w2 − ~k2 −m2

2m
(336)

The momentum space integral of the Lagrangian is:
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−ı
τ�

0

dτ ′fknk → −ıfkτ (337)

giving the kernel for one frequency as:

KT ∼ exp (−ıfknkτ) (338)

If nk → 1 we have the TQM single particle propagator:

K̂τ (k; k′) = exp (−ıfkτ) δ (k − k′) (339)

Basically we are taking the existing Lagrangian and stretching it along clock
time.

We have played a bit fast and loose with normalizations, but the principles
are clear.

7.5.3 Measure

Fock space consists of products of basis wave functions:

|{nk}〉 → |n0k0〉 |n1k1〉 |n2k2〉 . . . (340)

A path is a series of positions in this Fock space. The measure weights each
possible position equally, so the measure is:

Dφ ≡
N−1∏
n=0

Dnφ,Dnφ ≡
∏
k,nk

dc
(n)
k,nk

(341)

7.5.4 Interaction terms

n 3

n 2

n 1

…

…

n

n+1

n+2

n+3

p

kq

aq
†bk

†ap + apbk
†aq

†

2

Figure 12: Interaction term in ABC model
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Consider the discretized form of the path integral. Consider an expansion
of the path integral in powers of the coupling constant. Consider the term for
the first power of the coupling constant. The coupling term is represented by a
term of the form:

exp
(
−ıελ

�
d4x

ABA

2

)
(342)

This can happen at any of the N − 1 intermediate steps. Assume we are
looking at the case where this happens at clock tick number n. Note – in striking
contrast to the SQM case – the interaction term has no dependence on n, on
the clock time.

As we take the limit as N → ∞ the size of the time slice ε ≡ T/N goes to
zero so we can approximate the exponential by:

1− ıελ

�
d4x

ABA

2
(343)

The path integral is formed by doing the integrals from 0 → n− 1, then the
integral over the interaction term at n, then the integrals from n+ 1 → N − 1.
The terms before n are included in the free propagator(s) from 0 to n; the terms
after n are included in the free propagators from n to N , we have the interaction
term to consider here.

The integral over space at step n will give us a δ function in momentum at
step n: δ (k + q − p). Notice that four momentum is conserved at the vertex.
This is another point of difference with SQM. In SQM only the three momentum
is conserved at a vertex, the conservation of energy comes from the integral over
the clock time.

For the nth time in our path integral from 0 to T , we role the dice in our
game of snakes and ladders. Spelled out in terms of a and b operators we have:

Ap = apφ
†
p + a†pφp

Bk = bkφ
†
k + b†kφk

Aq = aqφ
†
q + a†qφq

(344)

We might drop down one step in terms of A particles with momentum p
while going up one step for A particles with momentum q and one step for B
particles with momentum k. This would be accomplished by a term of the form
λa†qb

†
kap. There are two such terms in the interaction term, neatly canceling

out the factor of 1
2 . To contribute to the first order perturbation diagram the

interaction must hit exactly once on the way from 0 to N. The result, pulling
all this together, and going from discrete to continuous form is:

ψ̂T (q, k) = −ıλ
T�

0

dτ

�
dpK̂

(m)
Tτ (q) K̂(µ)

Tτ (k) δ (q + k − p) K̂(m)
τ (p) ϕ̂ (p) (345)
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7.5.5 Full propagator

We now have what is required to compute an arbitrary propagator. The topol-
ogy of the diagrams is unchanged from SQM: we get exactly the same set of
diagrams, but with the intermediate integrals and initial wave function(s) over
four dimensions rather than three. To help see this, take a standard Feynman
diagram in SQM. It has an integral over clock time from start to finish (we are
looking at finite clock time measurements, not beams or averages). At each
vertex we have an integral over three space or three momentum coordinates,
depending on our representation. Lets say we are working in the position repre-
sentation. As we did in the derivation of the semi-classical approximation, add
to the x1, x2, x3 an x4. Clearly the topology is unchanged. Now rotate x4 → ıt.
We have arrived at TQM, but have not changed the topology.

The path integral in perturbation expansion is given by the sum over all
diagrams consistent with the boundary conditions. We have to integrate over
time and space coordinates, convolute over clock time. The general propagator
is given by:

〈{nk′} |
�
Dφ exp

ı T�

0

dτLfree [φ]− V [φ]

 |{nk}〉 (346)

where {nk} is the initial element in Fock space (or more generally a sum
over such elements) and {nk′} is the final element in Fock space. The Feynman
diagrams are generated by expanding this in powers of the coupling constant.

7.6 Free particles

How does the free propagator in TQM compare to the free propagator in SQM?

k = k 2 + m2 ı k = k 2 + m2 ı

Figure 13: Contour for retarded propagator

We compute the free propagators for SQM and then TQM. We work these
out for an A particle; the B and C are the same.

Our goal here to establish clearly the relationship between the SQM and
TQM propagators, to make an apples-to-apples comparison between the two.
The best way to do this is to look not just at the propagators but as usual at
their effects on Gaussian test functions.

We will take as the starting point the respective differential equations for
the SQM and TQM propagators. These may be derived from the path integral
approach using the powerful generating approaches described in for instance
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Kashiwa and Zee Kashiwa et al. [1997], Zee [2010]. Here we take them as a
given of the analysis.

7.6.1 Free particle in SQM

We start with the Klein-Gordon equation. We define the propagator by:(
− ∂2

∂τ2
+∇2 −m2

)
K̄τ (~x; ~x′) = ıδ (τ) δ3 (~x− ~x′) (347)

In momentum space we have:

−ı
k2
0 − ~k2 −m2

=
1

(2π)4
(348)

We choose retarded boundary conditions. This implies that both poles have
a small negative imaginary part:

k0 = ±ω~k − ıε, ω~k ≡
√
m2 + ~k2 (349)

and the inverse Fourier transform is:

K̄τ (~x, ~x′) = −ı lim
ε→0

1
(2π)4

�
dk0d~k

exp
(
−ık0τ + ı~k · (~x− ~x′)

)
(k0 + ıε)2 − ~k2 −m2

(350)

Doing the k0 integral explicitly we get:

K̄τ (~x, ~x′) =
1

(2π)3

�
d~k

exp
(
−ıω~kτ

)
− exp

(
ıω~kτ

)
2ω~k

exp
((
ı~k · (~x− ~x′)

))
(351)

In terms of the conventional basis functions:

φ̄~k (~x) ≡ 1√
2ω~k

exp
(
ı~k · ~x

)
(352)

this is:

K̄τ (~x, ~x′) =
1

(2π)3

�
d~kφ̄∗~k (~x) φ̄~k (~x′)

(
exp

(
−ıω~kτ

)
− exp

(
ıω~kτ

))
(353)

To make a closer comparison to TQM we wish to shift to the basis functions:

φ~k (~x) ≡ 1
√

2π
3 exp

(
ı~k · ~x

)
(354)

This will let us use our familiar Gaussian test functions on the right, without
worrying about how to describe them in terms of the 1√

2ω
basis functions used in

most treatments. (Or how to undescribe them on the far side of the calculation.)
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To do this we transform the conventional kernel to this basis by multiplying
it by:

2ω~k (355)

This gives:

K̄τ (~x, ~x′) →
�
d~k

exp
(
ı~k · ~x

)
√

2π
3

exp
(
−ı~k · ~x′

)
√

2π
3

(
exp

(
−ıω~kτ

)
− exp

(
ıω~kτ

))
(356)

This make sense: we associate with each normalized plane wave a corre-
sponding frequency in clock time. We have a traditional kernel of the form:

Kτ =
∑
n

φ∗nφn exp (−ıωnτ) (357)

We apply this to a Gaussian test function. We choose one centered on ~k0

with ~k ≡ ~k0 + δ~k, initial position ~x0. We will take one which is separable in the
three space directions:

ˆ̄ϕ0

(
~k
)

= ˆ̄ϕ(y)
0 (ky) ˆ̄ϕy0 (ky) ˆ̄ϕ(z)

0 (kz) (358)

where the x Gaussian test function is:

ˆ̄ϕ(x)
0 (kx) = 4

√
1
πσ̂2

x

e
−ıkxx0−

(kx−k
(0)
x )2

2σ̂2
x = 4

√
1
πσ̂2

x

e
−ıkxx0−

δk2
x

2σ̂2
x (359)

and y, z the same.
The concession to relativity is to include both positive and negative frequen-

cies for each wave vector.
We now take as a working assumption that our incoming wave function is

dominated by the positive frequency part. (This is the same trick we used in
the analysis of the time-of-arrival measurements in sub-section 4.3). If we were
going to examine phenomena like Zitterbewegung we would need to relax this
assumption.

We therefore simplify our kernel to:

K̄τ (~x, ~x′) →
�
d~k

exp
(
ı~k · ~x

)
√

2π
3

exp
(
−ı~k · ~x′

)
√

2π
3 exp

(
−ıω~kτ

)
(360)

The momentum space form is:

ˆ̄Kτ

(
~k,~k′

)
= exp

(
−ıω~kτ

)
δ3
(
~k − ~k′

)
θ (τ) (361)

We next expand ω~k in powers of the kinetic energy:
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ω~k ≈ m+
~k2

2m
−

~k4

8m3/2
+O

(
~k6
)

(362)

If we need the relativistic corrections we can keep the fourth and higher
order terms. Alternatively we could take advantage of the fact that all our
calculations start with Gaussian test functions and expand, not around ~k = 0,
but around ~k = ~k0:

ω~k =

√
m2 +

(
~k0 + δ~k

)2

≈ ω0 +
δ~k · ~k0

ω0
+
ω0

2

δ~k · δ~k
ω2

0

−

(
δ~k · ~k0

)2

ω4
0

+ . . .

(363)
In either case we would entangle the three momenta with each other. For now
we confine ourselves to the zeroth and quadratic terms.

Applied to the Gaussian test function we get:

ˆ̄ϕτ
(
~k
)

=
�
d~k′ ˆ̄Kτ

(
~k;~k′

)
ˆ̄ϕ0

(
~k
)

(364)

or:

ˆ̄ϕτ
(
~k
)

= exp

(
−ımτ − ı

~k2

2m
τ

)
ˆ̄ϕ0

(
~k
)

(365)

We see on the SQM side the relationship between the various levels of anal-
ysis: the particle at rest (m term), the particle moving slowly ( k

2

2m ) term, and
the particle moving relativistically (k4 and higher corrections).

We summarize the SQM propagator (as applied to a Gaussian test function)
as:

ˆ̄Kτ

(
w,~k

)
= exp

ımτ + ı
~k2

2m
τ + ı

O
(
~k4
)

8
√
m

3 τ

 (366)

7.6.2 Free particle in TQM

We have the free propagator from above:

K̂τ

(
~k
)

= exp

(
ı
m

2
τ − ı

w2

2m
τ + ı

~k2

2m
τ

)
(367)

There are three differences between the TQM and SQM propagators. The
first two are not that useful for our purposes; the third is critical.

First we have an overall factor of:

exp
(
ı
m

2
τ
)

(368)
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as compared to the factor of:
exp (−ımτ) (369)

in the SQM propagator.
The frequency associated with, say, the mass of an electron is:

me

h̄
≈ .51 · 106eV

6.6 · 10−16eV sec
= 7.7 · 10−24sec−1 (370)

This is of order the frequencies associated with Zitterbewegung, about one
million times the frequencies we are dealing with here. In fact, as Zitterbewe-
gung has not itself been measured, we would have no starting point on the SQM
side. We will therefore ignore this factor.

The relativistic correction factor:

exp

ıO
(
~k4
)

8
√
m

3 τ

 (371)

is present in SQM but not in TQM.
These represent higher order corrections. As TQM is predicting significant

differences from SQM in even the non-relativistic case, relativistic corrections
to SQM are not needed (and clutter up the analysis).

The key difference is the factor of:

exp
(
−ı w

2

2m
τ

)
(372)

This represents the extension of the function in time/energy. Basically the
TQM propagator is the SQM propagator with additional fuzziness in time/energy.
This difference is the focus of attention in this work.

So we will take the SQM propagator as:

ˆ̄Kτ

(
~k
)

= exp

(
ı
~k2

2m
τ

)
(373)

the TQM propagator as:

K̂τ

(
~k
)

= exp

(
−ı w

2

2m
τ + ı

~k2

2m
τ

)
= exp

(
−ı w

2

2m
τ

)
ˆ̄Kτ

(
~k
)

(374)

We apply this to a Gaussian test function. We use a Gaussian test function
in energy times the previous Gaussian test function in three momentum.

ϕ̂0

(
w,~k

)
= ˆ̃ϕ0 (w) ˆ̄ϕ0

(
~k
)

(375)

with energy part:
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ˆ̃ϕ0 (w) ≡ 4

√
1
πσ̂2

t

e
ıwt0−

(w−w0)2

2σ̂2
t (376)

From the entropic analysis above (subsection 4.1):

w0 ∼ ω~k
σ̂2
t ∼ σ̂2

x + σ̂2
y + σ̂2

t
(377)

Application of the TQM kernel to the Gaussian test function is trivial:

ϕ̂τ (k) = exp
(
ı
k2 −m2

2m
τ

)
ϕ̂0 (k) (378)

7.7 Emission of a particle

What does the emission of a particle look like in TQM?

0

1

2

p

p k

A0 p( )

X

2 p,k( )

K2 X
m( ) p( ) K2 X

μ( ) k( )

KX
m( ) p( )

Figure 14: An A particle emits a B particle

7.7.1 Overview

We look at the case where an A particle emits a B. The initial particle ex-
pectation and dispersion are given; we wish to compute the outgoing particle
expectations and dispersions.

We start with a Gaussian test function A, extended in space for the SQM
case, and in time and space for TQM.

The initial expectation and dispersion are given at clock time τ0. We wish
to compute the final expectations and dispersions at clock time τ2. The B has
an amplitude λ to be emitted at each intermediate clock time τ1.

In a first order perturbation expansion we would integrate over intermediate
clock times τ1. But here we will focus on a smaller piece of the puzzle, looking
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at the contribution to the final wave function from a single point in clock time.
We look at:

ψ2 (p, k) = −ıλ
�
dpK

(m)
21 (p′)K(µ)

21 (k) δ (p′ + k − p)K(m)
10 (p)A0 (p) (379)

We look at this first in SQM then in TQM.

7.7.2 Emission of a particle in SQM

We start our A particle as a Gaussian test function in momentum space:

ˆ̄A0 (~p) = ˆ̄ϕ(x)
a (py) ˆ̄ϕ(y)

a (px) ˆ̄ϕ(z)
a (px) (380)

We are marking the constants specific to the wave function A with the letter
a, threading the a through the wave function. For the x component we have:

ˆ̄ϕ(x)
a (px) ≡ 4

√
1
πσ̂2

x

e
−ıpxxa−

(px−p
(a)
x )2

2σ̂2
x (381)

with y, z in parallel. The full wave function at τ0 is:

ˆ̄A0 (~p) = 4

√√√√ 1

π3det
(

ˆ̄Σ
)e−ı~p·~xa− 1

2∆~p· ˆ̄Σ
−1
·∆~p (382)

with ancillary definitions:

∆~p ≡ ~p− ~pa

ˆ̄Σ ≡

 σ̂2
x 0 0
0 σ̂2

x 0
0 0 σ̂2

x

 (383)

We are dropping the parts of the kernel that depend on the rest mass. For
the A particle these are independent of the interaction and therefore irrelevant.
For the B particle the exp (−ıµτ) is not independent of the interaction, but in
the limit as µ→ 0 this factor is constant and therefore also irrelevant.

The kernel that carries A from τ0 → τX is:

ˆ̄K
(m)

X (~p) = exp
(
−ı ~p

2

2m
τX

)
(384)

So the A wave function at X is:

ˆ̄AX (~p) = 4

√√√√ 1

π3det
(

ˆ̄Σ
)e−ı~p·~xa− 1

2∆~p· ˆ̄Σ
−1
·∆~p−ı ~p2

2m τX (385)

The integral over the δ function at τX gives:
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ˆ̄ψ2

(
~p′,~k

)
= −ıλ ˆ̄K

(m)

2X (~p′) ˆ̄K
(µ)

2X

(
~k
)

ˆ̄AX
(
~p′ + ~k

)
(386)

In a certain sense, we are pushing the final momentum back into the initial
wave function. The post interaction wave function has the same shape as the
initial wave function, but the shape is now shared by two particles.

The post-vertex kernels are:

ˆ̄K
(m)

2X (~p′) = exp

(
−ı (~p

′)2

2m
τ2X

)
, ˆ̄K

(µ)

2X

(
~k
)

= exp

(
−ı
~k2

2µ
τ2X

)
(387)

with τ2X ≡ τ2 − τX .
The wave function at τ2 is therefore:

ˆ̄ψ2

(
~p′,~k

)
= 4

√√√√ 1

π3det
(

ˆ̄Σ
)e
(
−ı(~p′+~k)·~xa− 1

2∆~p′· ˆ̄Σ
−1
·∆~p′−ıΩXτ2X−ıΩ0τX

)
(388)

with change in momentum:

∆~p′ ≡ ~p′ + ~k − ~pa (389)

and initial and final energies:

Ω0 ≡

(
~p′ + ~k

)2

2m
,ΩX ≡ (~p′)2

2m
+
~k2

2µ
(390)

We can see that an integral over τX would tend to subtract out components
where Ω0 6= ΩX , giving us an effective δ function in the SQM energy.

The final wave function is strongly correlated between left and right. The
conservation condition at the vertex means A′, B are each sharing part of the
same initial momentum. They are like Siamese twins – separated at birth but
still connected. This is the source of the mysterious spooky action at a distance
complained of in the initial EPR paper Einstein [1935].

7.7.3 Emission of a particle in TQM

We take the same basic approach, but now with the coordinate energy/coordinate
time included, and with the conservation condition at the vertex being for four
momentum rather than three momentum.

We write the initial wave function as direct product of time and space parts:
A = ÃĀ.

Â0 (p) = ˆ̃Aa (E) ˆ̄Aa (~p) (391)
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The three momentum part is the same as in SQM. For the energy part we
have:

ˆ̃Aa (E) ≡ 4

√
1
πσ̂2

t

e
ıEta− (E−Ea)2

2σ̂2
t (392)

For a first attack we need to estimate the starting position, energy, and
dispersion in time. We will take:

ta ≈ τ0 = 0
Ea ≈

√
m2 + ~p2

a

σ̂2
E ≈ σ̂2

x + σ̂2
y + σ̂2

z

(393)

We write the entire wave function function as:

Â0 (p) = 4

√√√√ 1

π4det
(
Σ̂
)e−ıpxa− 1

2∆pΣ̂−1∆p (394)

with ancillary definitions:

∆p ≡ p− pa

Σ̂ ≡


σ̂2
t 0 0 0
0 σ̂2

x 0 0
0 0 σ̂2

y 0
0 0 0 σ̂2

z

 (395)

The kernel that carries A from τ0 → τX is:

K
(m)
X (p) = exp (−ıfpτX) = ˆ̃K

(m)

X (E) ˆ̄K
(m)

X (~p) exp
(
−ım

2
τX

)
(396)

with fp ≡ −E2−~p2+m2

2m and with energy part:

ˆ̃K
(m)

X (E) ≡ exp
(
ı
E2

2m
τX

)
(397)

So the A wave function at X is:

ÂX (p) = 4

√√√√ 1

π4det
(
Σ̂
)e−ıp·xa− 1

2∆pΣ̂−1∆pe−ıfpτX (398)

The energy part at A is now:

ˆ̃AX (E) = 4

√
1
πσ̂2

t

e
−ıEta− (E−Ea)2

2σ̂2
t eı

E2
a

2m τX (399)

The integral over the δ function at X gives:
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ψ̂2 (p′, k′) = −ıλK̂(m)
2X (p) K̂(µ)

2X (k) ÂX (p) (p′ + k) (400)

Again we are pushing the sum of the final momenta back into the initial wave
function. And again the post interaction wave function has the same shape as
the initial wave function, but the shape is now shared by two particles. But in
TQM, the shared shape is a shape in four rather than just three dimensions.

Post vertex kernels:

K̂
(m)
2X (p) = exp (−ıfp′τ2X) , K̂(µ)

2X (k) = exp (−ıfkτ2X) (401)

So the wave function at τ2 is:

ψ̂2 (p′, k) = 4

√√√√ 1

π4 det
(
Σ̂
)e
(

ı(p′+k)xa− 1
2 ∆p′Σ̂−1∆p′−ıFX τ2X−ıF0τX

)
(402)

with change in four momentum:

∆p′ ≡ p′ + k − pa (403)

and initial and final clock frequencies:

F0 ≡ −
(E′+w)2−(~p′+~k)2−m2

2m ,

FX ≡ fp′ + fk = − (E′)2−(~p′)2−m2

2m − w2−~k2−µ2

2µ

(404)

Per the long, slow approximation, we expect that both F0 and FX will be
small. As noted in the free particle section most of the dependence on clock
time will be carried by the coordinate time part of the wave function.

The parts dependent on the rest masses do not play a critical role, for the
same reasons as in the SQM case.

The energy part is:

ˆ̃
ψ2 (E′, w) = 4

√
1
πσ̂2

t

e
ı(E′+w)ta− (E′+w−Ea)2

2σ̂2
t

+ı

(
(E′)2

2m + w2
2m

)
τ2X−ı

(E′+w)2

2m τX

(405)

The left and right halves are sharing the same shape – now also extended
in energy/time – even though with increasing clock time they are separated by
greater and greater distances. Again, they are like Siamese twins separated at
birth but still connected, now across time as well as space.

7.7.4 Discussion

With TQM, to the correlations in three-momentum complained of in the initial
EPR paper we add correlations in energy. These provide raw material for a
Bell's theorem “in time”.
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Presumably Einstein would still be unhappy about the “spooky action at a
distance”, but perhaps he would be partly consoled by the inclusion of time on
the same basis as space.

7.8 Absorption of a particle

What does the absorption of a particle look like in TQM?

0

1

2

p

p

k
A0 p( )

A2 p( )

B0 k( )

X

KX
μ( ) k( )

K2 X
m( ) p( )

KX
m( ) p( )

Figure 15: An A particle absorbs a B particle

7.8.1 Overview

We look at the case where an A absorbs a B. The initial particle expectations
and dispersions are given; we wish to compute the outgoing particle's expecta-
tion and dispersion.

We start with two Gaussian test functions A,B. These are centered on
momenta pa, kb with initial expectations for position xa, xb. We define p′a ≡
pa + kb.

For simplicity we take the A particle as coming in from the left and the B
as coming in from the right. Without loss of generality we can assume both are
coming in along the x-axis with relative offset b along the y axis. With a slight
loss of generality we will assume b→ 0.

We have starting velocities, v > 0, u > 0:

~pa = mvx̂,~kb = −µux̂ (406)

and starting points on left and right:

~xa = −lx̂, ~xb = dx̂ (407)

In first order perturbation theory we would compute the final amplitude
by integrating over all intermediate clock times τ1. But – as with emission –
we focus on the contribution to this of the interaction at a specific clock time
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τX . Since we have a natural clock time to work with – the time defined by the
intersection of the classical paths of A,B – we will use that.

This is defined by:

x = −l + vτX = d− uτX (408)

giving crossing time τX :

τX =
d+ l

v + u
(409)

and crossing position xX :

xX =
vd− ul

v + u
(410)

Trivially yX = zX = 0.
With these simplifications we will be left with one integral to do, a convolu-

tion of the initial momenta:

Â2 (p′) = −ıλ
�
dkK̂

(m)
2X (p′) ÂX (p′ − k) ˆ̄BX (k) (411)

We will first treat the SQM case, then TQM.
In both cases the treatment is essentially a wrapper for a simple idea: when

two particles combine to form a third the dispersion of the resulting particle will
be given by a kind of average of the dispersions of the two incoming particles:

1
σa′

∼ 1
σa

+
1
σb

(412)

In particular if one of the incoming particles is markedly narrower than
the other – let's say it is B (σb � σa) – then the dispersion of the outgoing
particle will be dominated by the dispersion of the B: σ′a ≈ σb. Effectively the
interaction with B will act as a measurement of the position of A at the time
of interaction. The narrower B the less the uncertainty in the position of A at
τX . A narrow B acts as a gate, decreasing the uncertainty in the position of A
– and increasing the uncertainty in the corresponding momentum.

This is true for space in SQM; true for time and space for TQM. This gives
us a way to extend the single slit experiment to the realm of field theory.

To be sure this simple idea requires a fair quantity of wrapper to make it
precise, but that is all that is going on here.

7.8.2 Absorption of a particle in SQM

Initial wave functions The initial particles are given by:

ˆ̄A0 (~p) = 4

√
1

π3det
(

ˆ̄Σ
)e−ı~p·~xa− 1

2∆~p· ˆ̄Σ
−1
·∆~p

ˆ̄B0

(
~k
)

= 4

√
1

π3 det
(
ˆ̄S
)e−ı~k·~xb− 1

2∆~k· ˆ̄S
−1
·∆~k

(413)
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with expectations and dispersions:

∆~p ≡ ~p− ~pa,∆~k ≡ ~k − ~kb

ˆ̄Σ ≡

 σ̂2
x 0 0
0 σ̂2

x 0
0 0 σ̂2

x

 , ˆ̄S ≡

 ŝ2x 0 0
0 ŝ2y 0
0 0 ŝ2z

 (414)

In momentum space the kernels from start to X are:

ˆ̄K
(m)

X (~p) = exp
(
−ı ~p

2

2m
τX

)
, ˆ̄K

(µ)

X = exp

(
−ı
~k2

2µ
τX

)
(415)

The wave functions at X are therefore:

ˆ̄AX (~p) = 4

√
1

π3det
(

ˆ̄Σ
)e−ı~p·~xa− 1

2∆~p· ˆ̄Σ
−1
·∆~p−ı ~p2

2m τX

ˆ̄BX
(
~k
)

= 4

√
1

π3 det
(
ˆ̄S
)e−ı~k·~xb− 1

2∆~k· ˆ̄S
−1
·∆~k−ı~k2

2µ τX

(416)

Interaction The final wave function at τ2 will be given by a convolution of
all possible incoming momenta:

ˆ̄A2 (~p′) = −ıλK̂(m)
2X (~p′)

�
d~kÂX

(
~p′ − ~k

)
B̂X

(
~k
)

(417)

We first focus on the convolution and specifically on the x part of the integral
in momentum space:

Î
(x)
X (p′x) ≡

�
dkxÂX (p′x − kx) B̂X (kx) (418)

Since this is the integral of a Gaussian it can be solved exactly. However
we will get more insight by shifting to the position basis. The convolution in
momentum space becomes a multiplication in position space:

I
(x)
X (x) =

√
2πAX (x)BX (x) (419)

The Gaussian test functions for A and B are centered on their correspond-
ing classical paths; if we didn’t know about the classical paths we could have
computed the intersection point by looking for the clock time where both wave
functions are centered on the same value of x.

The close correspondence of classical and quantum trajectories is an attrac-
tive feature of the approach here; we can think of a particle as traveling along
a classical line with quantum fuzz around it.

At the crossing time, the coordinate forms for A and B at X are therefore:

AX (x) = F
(x)
X e

ıp(a)
x (x−xa)− 1

2σ2
xf

(x)
X

(x−xX)2−ı p
(a)2
x
2m τX

BX (x) = G
(x)
X e

ık(b)
x (x−xb)− 1

2s2xg
(x)
X

(x−xX)2−ı k
(b)2
x
2µ τX

(420)
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The dispersion factors f, g and normalization factors F,G are spelled out in
a A.3.1.

We define effective crossing times τ∗X and dispersions σ̂∗2x via:

1
σ2
x + ı τX

m

+
1

s2x + ı τX

µ

=
1

σ̂∗2x + ı
τ
(x)∗
X

m

(421)

A′ will start at X as a particle with effective dispersion σ̂∗2x originating from
a time τ∗X seconds back. We can compute the effective dispersion and effective
clock time by comparing the real and imaginary parts of the defining equation.

σ∗2x = σ2
xs

(x)4
τ +s2xσ

(x)4
τ

Σ
(x)4
τ

τ
(x)∗
X

m = τX

Σ
(x)4
τ

(
s(x)4

τ

m + σ(x)4
τ

µ

) (422)

σ
(x)2
τ and s(x)2τ are the absolute values of the complex dispersions:

σ(x)2
τ ≡

√
σ4
x +

(τX)2

m2
, s(x)2τ ≡

√
s4x +

(τX)2

µ2
(423)

and Σ(x)2
τ is a kind of average of these:

Σ(x)2
τ ≡

√
(σ2
x + s2x)

2 + τ2
X

(
mµ

m+ µ

)2

(424)

We can see from the defining equation that if either A or B has a significantly
smaller absolute dispersion the effective dispersion and effective clock time will
be dominated by that side. Take s2x � σ̂2

x. If we also have that µ � m, then
we have the much simpler:

σ̂∗2x ≈ s2x
τ

(x)∗
X ≈ 0

(425)

In this case B acts to reset A, creating an A′ which is effectively starts fresh
at τX with dispersion taken from B. B therefore acts precisely like a single slit
with width sx. This was why we chose to parameterize the interaction using
the effective dispersion and clock time.

Continuing:

I
(x)
X (x) = N

(x)
X ϕ

(∗)
X (x) (426)

with a starred Gaussian test function in x:

ϕ
(∗)
X (x) = F (x)∗

τ e
ıp

(a′)
x (x−xX)− 1

2σ∗2x f
∗(x)
X

(x−xX)2−ı p
(a′)2
x
2m τ

(x)∗
X

(427)

85



and an overall constant N (x)
X independent of x.1 The overall constant will

drop out when we calculate the final expectation and dispersion, so the effective
dispersion and crossing time carry all the physically significant information.

Final wave function Since all x dependence is carried by ϕ(∗)
X (x), we have

the Fourier transform by inspection:

Î
(x)
X (p′x) = N

(x)
X ϕ̂

(∗)
X (p′x) (428)

with the momentum space form of the starred wave function:

ˆ̄ϕ∗X (p′x) = 4

√
1

πσ̂∗2X
e
−ıp′xxX−

(
p′x−p

(a′)
x

)2

2σ̂∗2
X

−ı ~p′2
2m τ

(x)∗
X (429)

The other two dimensions work in parallel. Now that we are back in mo-
mentum space we have the resulting wave function at τ2:

ˆ̄A2 (~p′) = −ıλ exp
(
−ı ~p

′2

2m
τ2X

)
N

(x)
X N

(y)
X N

(z)
X

ˆ̄ϕ∗X (~p′) (430)

For our purposes the most interesting aspect is the associated uncertainty
in momentum. The overall normalization drops out:

〈(
~p′ − ~p(a

′)
)2
〉

=

�
d~p′
(
~p′ − ~p(a

′)
)2∣∣ ˆ̄ϕX (~p′)

∣∣2
�
d~p′
∣∣ ˆ̄ϕX (~p′)

∣∣2 (431)

The uncertainty in p is defined by the post-interaction wave function. For
the x direction this is:

σ̂∗2X =
1
σ∗2X

(432)

We can read off the physically important part of the resulting wave function
from the starred dispersion. If we have µ� m, sx � σx then if we detect A′ at
all, we know to within sx � σx where A was at τX . But this A′ has momentum
p′x with a large effective dispersion σ̂∗x ∼ 1/sx. So we lose all knowledge of A's
original momentum px; the highly variable p′x will hide that from us.

We see in detail how the Heisenberg uncertainty principle works in the x, px
dimension.

1For the record: N
(x)
X ≡

√
2π

F
(x)
τ G

(x)
τ

F
(x)∗
τ

e
−ıp

(a)
x (xa−xX )−ık

(b)
x (xb−xX )+ı

p
(a′)2
x
2m

τ∗X−ı

(
p
(a)2
x
2m

+
k
(b)2
x
2µ

)
τX

.
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7.8.3 Absorption of a particle in TQM

We work along the same lines to extend the analysis to TQM. The classical
trajectories now include a time component:

t = t0 + γτ (433)

We will treat the time parts of the wave functions as non-relativistic, γ ≈ 1.
This is consistent with our use of the non-relativistic approximation for the
space parts.

We will assume our initial wave functions are centered on τ0:

t0 = τ0 ⇒ t0 = 0 (434)

As a result we have the same intersection point in coordinate time that we
have in clock time:

tX = τX (435)

Initial wave functions For the initial wave functions we have A and B as
products of their time and space parts:

Â0 (p) = 4

√
1

πdet(Σ̂)e
−ıpxa− 1

2∆pΣ̂∆p = ˆ̃A0 (E) ˆ̄A0 (~p)

B̂0 (k) = 4

√
1

π4 det(Ŝ)e
ıkxb− 1

2∆kŜ−1∆k = ˆ̃B0 (w) ˆ̄B0

(
~k
) (436)

with time parts:

ˆ̃A0 (E) = 4

√
1
πσ̂2

t
e
ıEta− (E−Ea)2

2σ̂2
t

ˆ̃B0 (w) = 4

√
1
πŝ2t

e
ıwtb− 1

2ŝ2
t

(w−wb)
2 (437)

and:

∆p ≡ p− pa,∆k ≡ k − kb

Σ̂ ≡


σ̂2
t 0 0 0
0 σ̂2

x 0 0
0 0 σ̂2

y 0
0 0 0 σ̂2

z

 , Ŝ ≡


ŝ2t 0 0 0
0 ŝ2x 0 0
0 0 ŝ2y 0
0 0 0 ŝ2z

 (438)

and expectations and dispersions in time/energy:

ta ≈ τ0 = 0, tb ≈ τ0 = 0

Ea ≈
√
m2 + ~p2

a, wb ≈
√
µ2 + ~k2

b

σ̂2
E ≈ σ̂2

x + σ̂2
y + σ̂2

z , ŝ
2
t ≈ ŝ2x + ŝ2y + ŝ2z

(439)

The wave functions at X are:
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ÂX (p) = 4

√
1

π4det(Σ̂)e
ıp·xa− 1

2∆pΣ̂−1∆pe−ıfpτX

B̂X (k) = 4

√
1

π4 det(Ŝ)e
ıkxb− 1

2∆kŜ−1∆k−ıfkτX
(440)

Interaction To compute the wave function at τ2 we again convolute the in-
coming wave functions:

Â2 (p′) = −ıλK̂(m)
2X (p′)

�
dkÂX (p′ − k) B̂X (k) (441)

The coordinate energy part of the integral in momentum space is:

ˆ̃IX (E′) ≡
�
dw ˆ̃A (E′ − w) ˆ̃B (w) (442)

In coordinate time:

ĨX (t) =
√

2πÃX (t) B̃X (t) (443)

The wave functions in time are:

ÃX (t) = F
(t)
X e

−ıEat− 1

2σ2
t

f
(t)
X

(t−ta−Ea
m τX)2

+ı
E2

a
2m τX

B̃X (t) = G
(t)
X e

−ıwbt− 1

2s2
t

g
(t)
X

(t−tb−wb
µ τX)2

+ı
w2

b
2µ τX

(444)

The quadratic arguments of the Gaussians both reduce to (t− τX)2 in our
non-relativistic approximation.

By the same analysis in t as in x we get:

ĨX (t) = ÑX ϕ̃
(∗)
X (t) (445)

with starred wave function 2:

ϕ̃
(∗)
X (t) ≡ F

(t)∗
X e

ıE′
a(t−tX)− 1

2σ∗2
t

f
∗(t)
X

(t−tX)2−ıE′
a
2

2m τ
(t)∗
X

(446)

with effective dispersion and clock time as before with x→ t:

σ∗2t = σ2
t s

(t)4
τ +s2tσ

(t)4
τ

Σ
(t)4
τ

τ
(t)∗
X

m = τX

Σ
(t)4
τ

(
s(t)4

τ

m + σ(t)4
τ

µ

) (447)

As with space, we take s2t � σ̂2
t and µ� m getting in the limit:

2And – by analogy with space – overall constant ÑX ≡

√
2π

F
(t)
X

G
(t)
X

F
(t)∗
X

e
ıEa(ta−tX )+ıwb(tb−tX )−ı

E′
a
2

2m
τ∗X+ı

(
Ea

2

2m
+ w2

2µ

)
τX

.
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σ̂∗2t ≈ s2t
τ

(t)∗
X ≈ 0

(448)

So in time as in space: B acts to reset A, creating an A′ which effectively
starts fresh at τX with dispersion taken from B. B therefore acts precisely like
a single slit – in time – with width st.

Since all t dependence is carried by ϕ̃(∗)
X (t), we have the Fourier transform

by inspection:

Î
(x)
X (p′x) = ÑX ˆ̃ϕ

(∗)
X (E′) (449)

with the momentum space form of the starred wave function:

ˆ̃ϕ
(∗)
X (E′) = 4

√
1

πσ̂
(t)∗2
X

e
ıE′xX−

(E′−E′
a)2

2σ̂
(t)∗2
X

+ı
(E′)2

2m τX

(450)

Final wave function

Â2 (p′) = ˆ̃A2 (E′) ˆ̄A2 (~p′)
ˆ̃A2 (E′) = exp

(
ıE

′2

2m τ2X

)
N

(t)
X

ˆ̃ϕX (E′)
(451)

Uncertainty in time For our purposes the most interesting aspect is the
associated uncertainty in energy. For this the overall normalization drops out:

〈(
E′ − E(a′)

)2
〉

=

�
dE′

(
E − E(a′)

)2∣∣∣ ˆ̃ϕX (E)
∣∣∣2

�
dE′

∣∣∣ ˆ̃ϕX (E)
∣∣∣2 (452)

The uncertainty in E is defined by the post-interaction wave function:

σ̂∗2t =
1
σ∗2t

(453)

7.8.4 Discussion

There are obviously a variety of ways to improve the quality of the approxima-
tions used here. A good start might be to integrate over the intermediate τ1,
perhaps using a stationary phase approximation around τX . But the fundamen-
tal principles of the analysis will not be changed by this and in fact are clearer
in the simpler case.
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Two principal effects We have as noted in the introduction two principal
effects:

1. Increased dispersion in time at all points.

2. An uncertainty principle in time/energy on a completely equivalent basis
to one for space/momentum.

Anticipation and regret With respect to the increased dispersion, there is
a further point, not explored in detail here, but interesting.

If wave functions are extended in time as they are in space, then in a collision
they will start to interact earlier, cease interacting later than would otherwise
be the case.

The resultant broadening of the interaction zone may be seen as representing
forces of anticipation and regret.

Two different measurements With respect to the uncertainty principle,
we have shown in detail how the uncertainty principle for time/energy works
exactly as the uncertainty principle for space/momentum.

However there is a problem in testing this with time-of-arrival measurements.
If we use time-of-arrival measurements we are measuring dispersion in time, yes,
but we are also measuring dispersion in momentum along the axis of flight. Since
we expect the initial dispersions in time to be of order of those in space, it may
be difficult to prove there was no dispersion in time. Perhaps it was lost in the
error bars?

The basic problem is the time-of-arrival measurement is being used to mea-
sure two different things: one measurement cannot serve two masters.

One way to separate the two measurements would be to run the post-
interaction particle through a magnetic field. Let's say the particle will be
bent to the right by the magnetic field. The y position will serve as usual as a
measurement of velocity. But if at each y position we also record the time-of-
arrival the time-of-arrival should now serve as a measurement of dispersion in
coordinate time.

If we graph the clicks on a y, τ grid, the faster particles will hit earlier in
time and more to the left. In SQM we would expect to see a relatively narrow
trace from small y, τ to large y, τ . In TQM we would expect to see the same
trace on average, but significantly broader in τ at each y.

7.9 Exchange of a particle

What does the exchange of a particle look like in TQM?

7.9.1 Overview

We look at the case where an A and a C exchange a B. The initial particle
expectations and dispersions are given; we wish to compute the outgoing particle
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Figure 16: An A particle exchanges a B particle with a C particle

expectation and dispersions. We have two cases: the A emits a B which is then
absorbed by C and the C emits a B which is then absorbed by the A. We will
call these the left and right cases.

To lowest order in perturbation expansion we have convolutions over the two
intermediate clock times τ1, τ2.

ψ̂
(left)
3 (p′, q′) = −λΛ

τ3�
0

dτ2K̂
(M)
32 (q′)

�
d4qd4kĈ2 (q)

τ2�
0

dτ1
�
d4pK̂

(µ)
21 (k) Â1 (p)

ψ̂
(right)
3 (p′, q′) = −λΛ

τ3�
0

dτ2K̂
(m)
32 (p′)

�
d4pd4kÂ2 (p)

τ2�
0

dτ1
�
d4qK̂

(µ)
21 (k) Ĉ1 (q)

(454)
In TQM, the two initial wave functions are each defined by four expectations

in position, four in momentum, and four dispersions in either momentum or
position space, twenty-four variables total. We have twelve integrals in momen-
tum (or position), over the two initial particles A,C and the exchange particle
B. And the two convolutions in clock time. With appropriately programmed
mathematics software this is hardly a problem. But it is easy to lose sight of
the physics in the course of doing the calculations.

To keep focus we will do as we have in the two previous sub-sections and fix
the clock times of the vertexes as τX , τY . Different values of τX , τY will let us
look at specific cases. The properties of the exchanged particle are key; we will
focus on these.

Classical trajectories We will take the same starting wave functions as with
absorption, but with B → C. A has expectations xa, p(a), dispersions σ̂(a); C
expectations xc, q(c), dispersions ŝ(a).

We assume we have A coming in from the left; C from the right; both along
the x axis. Again we assume the collision is head-on with no offset along the ŷ
or ẑ axes.

We start by fixing τX , τY . Taking the left case first, we have for A and C:
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x
(L)
X = xa + p(a)

x

m τX

x
(L)
Y = xc + q(c)

x

M τY
(455)

And for the exchange particle:

x
(L)
Y = x

(L)
X +

k
(b)
x

µ
(τY − τX) (456)

With ∆x(L) ≡ x
(L)
Y − x

(L)
X ,∆τ ≡ τY − τX we have the expectation of the

momentum of the exchange particle:

k(L)
x = µ

∆x(L)

∆τ
(457)

so the momentum of B is exactly what it needs to get from X → Y in time
for its rendezvous with C. From conservation of momentum at each vertex we
have for the expectations of the final momenta:

〈p′x〉 = p(a)
x − k(L)

x , 〈q′x〉 = q(c)x + k(L)
x (458)

With the initial conditions specified and τX , τY as well, the final expectations
are immediate, with the final dispersions to be computed.

To get the right hand case we interchange the roles A↔ C:

x
(R)
X = xc + q(c)

x

M τY

x
(R)
Y = xa + p(a)

x

m τX
(459)

and:

k(R)
x = µ

∆x(R)

∆τ
(460)

giving final expectations:

〈p′x〉 = p(a)
x + k(R)

x , 〈q′x〉 = q(c)x − k(R)
x (461)

7.9.2 Exchange particle

We can write the wave function for the exchange particle in SQM as:

ˆ̄BY X
(
~k
)

= 4

√
1

π ˆ̄Σ
(X)

e
−ı~k·~xX− 1

2 (~k−~kX)· 1
ˆ̄Σ(X) ·(~k−~kX)−ı~k2

2µ ∆τ
(462)

and in TQM, first in covariant notation:

B̂Y X (k) = 4

√
1

πΣ̂(X) e
ıkxX− 1

2 (k−kX) 1
Σ(X) (k−kX)−ıfk∆τ

fk ≡ −k2−µ2

2µ

(463)
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and also as product of time and space parts:

B̂Y X (k) = ˆ̃BY X (w) ˆ̄BY X
(
~k
)

exp
(
ı
µ

2
∆τ
)

(464)

ˆ̃BY X (w) = 4

√
1

π ˆ̃σ
(X)

e
ıwtX− 1

2
(w−wX)2

2ˆ̃σ(X) +ıw2
2µ ∆τ (465)

Taking the left side for definiteness, the wave function of the intermediate
state is properly the direct product of the highly correlated wave functions of
A,B with the (as yet) uncorrelated wave function of the C particle. After B
encounters C at Y , B is gone and now A and C are highly correlated.

We have proceeded a bit formally, specifying τX , τY and then deriving the
properties of the exchange particle from these. A more physical approach might
be to fix the momentum of the exchange particle and then integrate over all
values of τX (or τY ) consistent with that.

7.9.3 Discussion

In any case, if we are interested in the use of one particle as a measurement of
the other, then we already have what we need: B inherits its dispersions from
its parent. If its parent was narrow in time/space, then it will be as well and
act as a de facto gate with respect to the other particle.

If we are interested in doing a Bell's theorem correlation in time, then we
need to track the correlations through. Because momentum is conserved at each
vertex, the outgoing particles will be highly correlated in momentum space.

If we are interested in symmetry properties in the time direction, then we
can:

1. Take our C as really an A,

2. Start with wave functions that are symmetric under particle exchange but
which nevertheless have a component which is anti-symmetric in time (as
the wide and narrow wave function in section 7.3),

3. And then see what breaks.

In SQM we expect that we will see scattering which is symmetric in space at
each clock tick. In TQM we expect that we will see a component which is anti-
symmetric at specific clock ticks, but which still preserves complete symmetry
when both space and time are interchanged.

If we are interested in the bound case, we can look at the exchange particle
as creating a Yukawa force in time. In this case we will need to track the factors
of exp (−ıµτ). Note that the exp (−ıfkτ) factor will tend to keep the exchange
particle on-shell for larger values of ∆τ . In coordinate space this will tend to
make the effective potential look like a LiÃ©nard–Wiechert potential.
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Figure 17: Loop correction to the mass

7.10 Loop correction to the mass

How do we calculate loop diagrams in TQM?

7.10.1 Loop correction in SQM

In the ABC model there is an amplitude λ for an A to emit a B then absorb
it. As is well known, in quantum field theory this can be made to look like a
correction to the mass, with the effect of taking a bare mass to a corrected mass:
m2

0 → m2 = m2
0 + δm2. Unfortunately the integral for this δm2 correction is

divergent. If the A particle has four-momentum p and emits a B with four-
momentum k, to compute the amplitude associated with the loop we will need
to integrate over all possible values of the intermediate k:

δm2 ∼
�
d4k

ı

(p− k)2 −m2

ı

k2 − µ2
(466)

This is logarithmically divergent at large k:

δm2 ∼
�
d4k

k4
(467)

As a result all such integrals have to be regularized: a convergence factor has
to be inserted which acts as an effective cutoff, throwing out the high energy
part of the loop in a way that does not distort results at lower energies.

To do this we take advantage of the general principle that all physical mea-
surements involve an implicit comparison between two measurements. If we
are going to use the mass of a particle as a value in one calculation we must
first have found that mass in another. An absolute, standalone measurement
is not possible even in principle. All measurements have to be renormalized–
normalized by comparison to another – to get physically meaningful numbers.

In quantum field theory renormalization – needed physically – is also used
to regularize, to contain and control the infinities. If we make the necessary
comparison in the right way, we can use it to subtract off the infinities.
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It's a bit like weighing a mouse by first weighing an aircraft carrier without
the mouse, weighing the aircraft carrier with the mouse on board, and then
subtracting out the weight of the aircraft carrier to get the weight of the mouse.

There is no guarantee that this will work. What if the cutoff function/procedure
being used on both sides of the comparison has unintended side-effects at lower
energies? But in spite of the obvious risk the procedure works — and brilliantly
– producing some of the most accurate predictions in the whole of physics.

7.10.2 Loop correction in TQM

With an extra dimension to integrate over we might reasonably expect that the
corresponding loop integrals in TQM would not only be divergent, but perhaps
even be divergent in a way which cannot be contained by renormalization.

We will first look at the effects of a simple mass correction term δm2

2m0
, then

at the full loop calculation.

7.10.3 Simple mass correction

= fp ı

Figure 18: Contour diagram for free propagator

We are first going to look at a simple mass correction. We start with a
“bare” mass, then add a correction term:

m2
0 → m2

0 + δm2 (468)

Kernel from above:(
ı
∂

∂τ
+
p2 −m2

0

2m0

)
K(0)
τ (x;x′) = δ (τ) δ4 (x− x′) (469)

In momentum space: (
ı
∂

∂τ
− fp

)
K̂(0)
τ = δ (τ) (470)

giving:

K̂(0)
τ = exp (−ıfpτ) θ (τ) (471)
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with the usual fp ≡ −p2−m2
0

2m0
.

We write the Schrödinger equation as:

ı
∂

∂τ
= −p

2 −m2
0 − δm2

2m0
= H0 + V (472)

with:

H0 = −p
2 −m2

0

2m0
, V =

δm2

2m0
(473)

The power series solution is a series of convolutions:

K̂T = K̂
(0)
T − ı

δm2

2m0

T�

0

dτ1K̂
(0)
T1 K̂

(0)
1 − δm4

4m2
0

T�

0

dτ2K̂
(0)
T2

τ2�

0

dτ1K̂
(0)
21 (p) K̂(0)

1 + . . .

(474)
or more compactly:

K̂ = K̂0 − ı
δm2

2m0
K̂0 ∗ K̂0 −

δm4

4m2
0

K̂0 ∗ K̂0 ∗ K̂0 + . . . (475)

As this is a series of convolutions we can use Fourier transforms with respect
to clock time to solve.

To avoid having to write expressions like ˆ̂
K for the Fourier transform (with

respect to τ) of something which is already a Fourier transform (with respect
to x) we define gp ≡ K̂

(0)
τ (p) , Gp ≡ K̂τ (p) .

We want gp in terms of its Fourier transform:

gp (τ) =
1√
2π

�
dω exp (−ıωτ)ĝp (ω) (476)

We will use contour analysis to compute this. Since we are only interested
in positive times, we close the contour in ω above the real line:

τ > 0 ⇒ exp (−ı (−ıε) τ) → exp (−ετ) (477)

With this condition the correct propagator in ω space is:

ĝp (ω) = − ı√
2π

1
ω − fp + ıε

(478)

We therefore have:

Gp = gp − ı
δm2

m0
gp ∗ gp −

δm4

m2
0

gp ∗ gp ∗ gp + . . . (479)

Ĝp = ĝp −
√

2πı
δm2

2m0
ĝ2
p −

(√
2π

2 δm2

2m0

)2

ĝ3
p + . . . (480)
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We have a geometric series so can sum:

Ĝp =
ĝ

1 +
√

2πı δm2

2m0
ĝ

(481)

expanding ĝ:

Ĝp = − ı√
2π

1

ω − p2−m2
0−δm2

2m0
+ ıε

(482)

and inverting get the obviously correct:

Gp = exp
(
ı
p2 −m2

0 − δm2

2m0
τ

)
θ (τ) (483)

7.10.4 Loop mass correction

We now look at the loop correction. We get the same kind of series as with the
simple mass correction.

K̂ = K̂(0)−λ2K̂(0) ∗L (p)∗K̂(0) +λ4K̂(0) ∗L (p)∗K̂(0) ∗L (p)∗K̂(0)− . . . (484)

with the loop integral:

Lτ (p) ≡
�
dkK̂τ (p− k) K̂(µ)

τ (p− k) (485)

Written as convolutions in clock time we have:

Ĝp = ĝp − 2πλ2ĝpL̂ω (p) ĝp + 4π2λ4ĝpL̂ω (p) ĝpL̂ω (p) ĝp − . . . (486)

Where L̂ω (p) is the Fourier transform with respect to clock time of the loop
integral.

We again have a geometric series so we get:

Ĝp = ĝp
1

1 + 2πλ2ĝpL̂ω (p)
(487)

To compute this we break the problem down into two steps: computing
Lτ (p) , L̂ω (p).

Loop integral for fixed clock time We apply the loop integral to a initial
Gaussian test function. In momentum space:

Lτ (p) =
�
d4kK̂(m)

τ (p− k) K̂(µ)
τ (k) ϕ̂0 (p) (488)

with initial Gaussian test function:
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ϕ̂0 (p) = 4

√√√√ 1

π4det
(
Σ̂
) exp

(
− (p− p0)

2

2Σ

)
(489)

As with the case of particle absorption, we note that the integral over the
internal momentum is a convolution in momentum space, so it is a product in
coordinate space. The corresponding loop integral in coordinate space is:

Lτ (x1) = 4π2

�
d4x0K

(m)
τ (x1;x0)K(µ)

τ (x1;x0)ϕ0 (x0) (490)

The kernels in coordinate space are:

K
(m)
τ (x1;x0) = −ı m2

4π2τ2 exp
(
− ım

2τ (x1 − x0)
2 − ım2 τ

)
K

(µ)
τ (x1;x0) = −ı µ2

4π2τ2 exp
(
− ıµ

2τ (x1 − x0)
2 − ıµ2 τ

) (491)

The product equals a single coordinate space kernel:

K(M)
τ (x1;x0) = −ı M

2

4π2τ2
exp

(
−ıM

2τ
(x1 − x0)

2 − ı
M

2
τ

)
(492)

with a modified mass M ≡ m+ µ and a prefactor.
So the loop integral in coordinate space is now:

Lτ (x1) = −ı m
2µ2

τ2M2

�
d4x0K

(M)
τ (x1;x0)ϕ0 (x0) (493)

The presence of the Gaussian test function on the right means we get by
inspection:

Lτ (x1) = −ı m
2µ2

τ2M2
ϕ(M)
τ (x1) (494)

We have a correction that shows a spread in time, but at the slightly slower
rate associated with the slightly larger mass M . Further the correction is much
greater at shorter clock times.

Lτ (p1) = −ım
2µ2

τ2M2

�
d4p0K̂

(M)
τ (p1; p0) ϕ̂0 (p0)

K̂
(M)
τ (p1; p0) = exp

(
ı
p20−m

2

2m τ
)
δ4 (p1 − p0)

(495)

So the loop correction for fixed clock time is:

Lτ (p) = −ı m
2µ2

M2τ2
exp

(
ı
p2 −M2

2M
τ

)
ϕ̂0 (p) (496)

At this point the value of the loop correction at a particular value of p
is independent of the specific shape of the incoming wave function. We are
therefore free to drop the initial wave function from the analysis:
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Lτ (p) = −ı m
2µ2

M2τ2
exp

(
ı
p2 −M2

2M
τ

)
(497)

We have selected this specific case as our demonstration partly because we
can neglect the incoming wave function once we have the loop correction at a
specific p. This is not necessarily the case in general.

As we have seen throughout, TQM implies the initial wave functions:

1. have finite dispersion in time (as well as space)

2. are entangled with the loop integration variables

This in turn means that each loop integration picks up a Gaussian factor that
guarantees its convergence, and then passes a Gaussian factor (usually a bit
wider) along to the next step in the calculation.

The combination of finite initial dispersion and entanglement forces conver-
gence.

Note this approach will not work in SQM. In SQM there is by assumption
no finite initial dispersion in time. And even if there were, each step is cut off
from the previous since there is no entanglement in time.

Fourier transform of the loop integral over clock time Now that we
have the loop integral for a specific value of the clock time we can take the
Fourier transform with respect to τ :

L̂ω (p) = −ı 1√
2π

∞�

−∞

dτ
m2µ2

M2τ2
eı(ω−Fp)τ (498)

We define Fp ≡ −p2−M2

2M . For small µ, Fp ≈ fp.
We use contour integration to compute this. We will use Feynman boundary

conditions rather than retarded because the results are slightly simpler if we do
so.

We mean by this that when ω > fP we go in the positive clock time direction;
when ω < fP we go in the negative clock time direction. (This is the first and
only time we allow movement in the negative clock time direction.) In both
cases we will take the pole at τ = 0 + ıε and close the contour above.

We will first look at the case for ω−Fp > 0. We have a pole of second order.
The residue is:

Res(h) = lim
ε→0

d

dτ
h(τ) (499)

with:

h (τ) = −ı 1√
2π

m2µ2

M2 exp (ı (ω − FP ) τ)

Res(h) = 1√
2π

m2µ2

M2 (ω − Fp)
(500)
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or:

L̂ω (p) =
√

2πı
m2µ2

M2
(ω − FP ) (501)

With Feynman boundary conditions the case ω−Fp < 0 is identical. (With
retarded boundary conditions we would have had to (ω − FP ) → |ω − FP |,
which would in turn have created a second pole in the inversion from clock
frequency to clock time below. The results would be more complex, but there
is no problem of principle.)

Substituting back in the original expression (equation 487):

Ĝp = − ı√
2π

1
(1 + a)ω + (fp + afP ) + ıε

, a ≡ 2πλ2µ2 (502)

This has a pole at:

ω = f ′p =
fp + afP

1 + a
=

1
1 + a

(
−p

2 −m2

2m
− a

p2 − (m+ µ)2

2 (m+ µ)

)
(503)

giving for the corrected propagator:

exp (−ıfpτ) →
1

1 + a
exp

(
−ıf ′pτ

)
(504)

If the loop correction had depended on the specifics of the initial Gaussian
test function, we would only have been able to supply the correction from the
first loop term. We would not have been able to sum the infinite series of loop
corrections in one expression.

We still need to renormalize. We could take the value of f ′p on-shell as the
starting point, then examine the behavior as we move further off-shell.

But we have separated the problems associated with renormalization from
those associated with regularization.

7.10.5 Discussion of the loop corrections

At this point we have established that TQM does not need to be regularized.
We have only looked at a toy case. But the principles established here

apply generally. As noted, the combination of Morlet wavelet analysis and
entanglement in time mean that the integrals encountered in a diagram are
self-regularized: the Gaussian functions which are passed through a series of
integrals easily dominate any polynomial divergence.

An implication is that it is the assumption that quantum mechanics does
not apply along the time dimension that is responsible for the ultraviolet di-
vergences. The familiar divergences are a side-effect of not pushing the ideas of
quantum mechanics and special relativity hard enough, of our failure to treat
time and space symmetrically in quantum mechanics.
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7.11 Discussion

We have established that we can extend TQM to include the multiple particle
case. Equivalently, that we can extend field theory to include time on the same
basis as space.

TQM is conceptually simpler than SQM: time and space are treated on an
equal footing and there are no ultraviolet divergences. But it is calculationally
more complex: we have coordinate time to consider and we are required to
use Gaussian test functions rather than plane waves as the fundamental unit of
analysis.

We have examined the basic parts of a Feynman diagram: free propagators;
the emission, absorption, and exchange of a particle; and simple loop diagrams.
We are therefore able to work out – in principle at least – the results for any
diagram in a perturbation expansion. And therefore to compare TQM to SQM
in any experiment which can be described by such expansions.

To falsify TQM we need experiments that work at short times and with
individual wave packets. Long times and averages over wave packets kill the
effects associated with dispersion in time.

The most decisive such experiments are likely to be ones that emphasize the
effects of the time/energy uncertainty principle.

Additional effects include:

1. anti-symmetry in time,

2. correlations in time (Bell's theorem in time),

3. forces of anticipation and regret.

To be sure, these latter effects likely to be both subtle and small. Therefore
they may not be that useful for falsifiability, our primary target in this work.
But they are interesting in their own right.

8 Discussion

“It is difficult to see what one does not expect to see.” – William
FellerFeller [1968]

8.1 Falsifiability

With the single slit in time we have a decisive test of temporal quantum me-
chanics. In SQM, the narrower the slit, the less the dispersion in subsequent
time-of-arrival measurements. In TQM, the narrower the slit, the greater the
subsequent dispersion in subsequent time-of-arrival measurements. In principle,
the difference may be made arbitrarily great.

To get to this point we had to develops the rules in a way that does not
admit of free parameters or other ways to significantly modify the predictions.
To do this:
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1. We took path integrals as the defining representation. This made the
extension from three to four dimensions unambiguous.

2. We used Morlet wavelet analysis rather than Fourier analysis to define
the initial wave functions. This let us avoid the use of unphysical wave
functions and made achieving convergence and normalization of the path
integrals possible.

3. We distinguished carefully between “clock time” and “coordinate time”.

As a result, once we have applied the requirement that TQM match SQM in
the appropriate limit, there are no free parameters.

That does not of itself prove that there is not another way to apply quan-
tum mechanics along the time dimension. For instance, one could start from
a Hamiltonian approach, see for instance Yau [2015]. We have therefore been
careful to focus on dimensional and symmetry arguments, which give first or-
der predictions which are likely to be independent of the specifics of whatever
method we might use. These first order predictions of TQM do not have much
“give”:

• The initial dispersion in time is fixed by symmetry between time and space
and the principle of maximum entropy.

• The evolution of the wave functions is fixed by the long, slow approxima-
tion. This allows for give, but only over times of picoseconds, glacial by
the standards of TQM.

• We could choose Alice's frame or Bob's to do the analysis, but the correc-
tions due to this are of second order. The corrections can be eliminated
entirely by selecting “the rest frame of the vacuum” as the defining frame
for TQM.

The predictions of TQM are therefore falsifiable to first order.

8.2 Experimental effects

We have discussed two primary effects:

1. generally increased dispersion in time, as time-of-arrival effects.

2. the time/energy uncertainty principle, as the single slit in time.

These effects should be present in any experimental setup in which the sources
vary in time and the detectors are time-sensitive.

Additionally we can look for:

• Forces of anticipation and regret. As the paths in TQM advance into the
future they will encounter potentials earlier (anticipation) than in SQM.
And as they dive back into the past they will continue to interact with
potentials later (regret) than is the case in SQM.
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• Shadowing in time – self-interference by detectors and sources.

• Correlations in time (Bell's theorem in time). Particles that have inter-
acted in the past, as in EPR experiments, will be entangled in time as
well as space.

• Anti-symmetry in time. Wave functions are free to satisfy their symmetry
requirements using the time dimension as well as the three space dimen-
sions.

In general, any quantum effect seen in space is likely have an “in time” variation.
TQM is to SQM with respect to time as SQM is to classical mechanics with
respect to space.

Reviews of foundational experiments in quantum mechanics (for example
Lamoreaux Lamoreaux [1992], Ghose Ghose [1999], and Auletta Auletta [2000])
provide a rich source of candidate experiments: the single and double slit as well
as many other foundational experiments have an “in time” variant, typically
with time and a space dimension flipped.

The experiments are likely to be difficult. The attosecond times we are
primarily interested in are at the edge of the detectible. The investigation here
was partly inspired by Lindner's “Attosecond Double-Slit Experiment” Lindner
et al. [2005]. But the times there, 500as, are far too long for us. More recent
work has reached shorter and shorter times: 12 attoseconds in Koke, Sebastian,
and Grebing Koke et al. [2010] and as noted the extraordinary sub-attosecond
times in Ossiander Ossiander et al. [2016]. The effects of dispersion in time
should now be within experimental range.

8.3 Further extensions

We have provided only a basic toolkit for TQM. Areas for further investigation
include:

1. Generalizing the treatment of spinless massive bosons to include photons
and fermions. Extension to the Standard Model.

2. Derivation of the bound state wave functions from first principles.

3. More detailed treatment of scattering experiments.

4. Exact treatment of the single slit in time, included paths that wander back
and forth through the slit.

5. Careful treatment of measurements, including paths that overshoot, un-
dershoot, and loop around the detector.

6. Decoherence in time.

7. Infrared divergences. From the point of view of TQM, these may be the
flip side of the ultraviolet divergences, suppressed in a similar way.
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8. More detailed treatment of the ultraviolet divergences.

9. Examination of the spin-statistics connection: the T in the CPT theorem
must come under grave suspicion.

10. Statistical mechanics. Any statistical ensemble should include fluctua-
tions in time. Implicit in TQM is the possibility that the initial smooth
wave function of wave mechanics should itself be replaced by a statistical
ensemble of fluctuations in time.

11. More detailed treatment of the choice of frame.

12. Quantum gravity. Since TQM is by construction highly symmetric be-
tween time and space and free of the ultraviolet divergences, it may be a
useful starting point for attacks on the problem of quantum gravity.

8.4 Five requirements

In their delightfully titled How to Think about Weird ThingsSchick Jr. and
Vaughan [1995] the philosophers Schick and Vaughn lay out five requirements
that a hypothesis such as TQM should satisfy:

1. Testability – are there experimental tests? ideally: is the hypothesis
falsifiable? TQM has no free parameters; it can therefore be falsified
by any experiment at appropriate scale looking at time varying quantum
phenomena.

2. Fruitfulness – does the hypothesis suggest new lines of research, new phe-
nomena to explore? All time-varying quantum phenomena offers targets
for investigation. The list of experimental effects given above is doubtless
far from exhaustive.

3. Scope – how widespread are the phenomena? TQM applies to all time-
varying quantum phenomena.

4. Simplicity – does it make the fewest possible assumptions? TQM elim-
inates the assumption that time and space should be treated differently
in quantum mechanics. It also eliminates the ultraviolet divergences and
the consequent need to regularize the loop integrals in field theories (as
QED).

5. Conservatism – is it consistent with what is known? TQM matches
SQM in the long time (picosecond) limit.

8.5 No null experiments

This concludes the argument for TQM.
Now suppose that one or more of the proposed experiments is done and

conclusively demonstrates that TQM is false. That would in turn raise some
interesting questions:
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1. Is there a frame in which TQM is maximally (or minimally) falsified? That
would be a preferred frame, anathema to relativity.

2. Is TQM equally false in all frames? if it is false in all frames, how do we
reconcile the disparate wave functions of Alice and Bob?

As TQM is a straight-forward extrapolation of quantum mechanics and special
relativity, experiments that falsify TQM are likely to require modification of our
understanding of either quantum mechanics or special relativity or both. There
are no null experiments.
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A Conventions

We use natural units h̄ = c = 1. When summing over three dimensions we use
i, j, k. We use ı sans dot for the square root of -1; i with dot for the index
variable. When summing over four dimensions we use h for the coordinate time
index so such sums run over h, i, j, k.

A.1 Clock time

We use τ for clock time. The use of the Greek letter τ for clock time is meant to
suggest that this is a “classical” time. We use f for its complementary variable,
clock frequency:

f (op) ≡ ı
∂

∂τ
(505)

The clock time τ will usually be found at the bottom right of any symbol it
is indexing:

ϕτ ,Kτ (506)

The clock time is in its turn frequently indexed: τ0, τ1, τ2, . . .
As a result, deeply nested subscripts are an occasional hazard of this analysis.

To reduce the nesting level we use obvious shortenings, i.e.:

ϕτ1 (x1) → ϕ1 (x1) → ϕ1 (507)

Kτ1τ0 (x1;x0) → K10 (x1;x0) → K1 (x1;x0) → K1 (508)

And we represent differences in clock time by combining indexes:

τ21 ≡ τ2 − τ1 (509)

A.2 Coordinate time and space

We use E, ~p for the momentum variables complementary to coordinate time t
and space ~x:

E(op) ≡ ı ∂∂t
~p(op) ≡ −ı∇ (510)

When there is a natural split into coordinate time and space parts we use a
tilde to mark the time part, an overbar to mark the space part. For example:

ψ (t, ~x) = ψ̃τ (t) ψ̄τ (~x) (511)

This is to reinforce the idea that in this analysis the three dimensional part
is the average (hence overbar), while the coordinate time part contributes a
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bit of quantum fuzziness (hence tilde) on top of that. With that said, we will
sometimes omit the overbar and the tilde when they are obvious from context:

ϕ̃τ (t) ϕ̄τ (~x) → ϕτ (t)ϕτ (~x) (512)

We use an overdot to indicate the partial derivative with respect to labora-
tory time:

ġτ (t, ~x) ≡ ∂gτ (t, ~x)
∂τ

(513)

A.3 Fourier transforms

We use a caret to indicate that a function or variable is being taken in momen-
tum space. To keep the Fourier transform itself covariant we use opposite signs
for the coordinate time and space parts:

ĝ (E, ~p) = 1√
2π

4

∞�
−∞

dtd~xeıEt−ı~p·~xg (t, ~x)

g (t, ~x) = 1√
2π

4

∞�
−∞

dEd~pe−ıEt+ı~p·~xĝ (E, ~p)
(514)

For plane waves:

φp (x) = φ̃ (t) φ̄ (~x) = 1√
2π

exp (−ıEt) 1√
2π

3 exp (ı~p · ~x)

φ̂x (p) = ˆ̃
φ (E) ˆ̄φ (~p) = 1√

2π
exp (ıEt) 1√

2π
3 exp (−ı~p · ~x)

(515)

To shorten the expressions we use:

x ≡ (t, ~x) = (t, x, y, z) (516)

The difference between x the four vector and x the first space coordinate
should be clear from context. In momentum space we use:

p ≡ (E, ~p) = (E, px, py, pz) (517)

We have similar rules for clock time τ and its complementary energy f :

ĝf = 1√
2π

∞�
−∞

dτeıfτgτ

gτ = 1√
2π

∞�
−∞

dfe−ıfτ ĝf

(518)

With these conventions when a Fourier transform is given by a convolution:

ĥ (p) =
�
dkf̂ (p− k) ĝ (k) (519)

the function in coordinate space is given by:
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h (x) =
√

2πf (x) g (x) (520)

When it is obvious that a symbol represents a Fourier transform we may
drop the caret:

ϕ̂ (p) → ϕ (p) (521)

A.3.1 Gaussian test functions

As Gaussian test functions play a critical role in this investigation it is useful
to have a consistent notation with which to describe them.

In general we define a Gaussian test function as a normalized Gaussian func-
tion. It may be in position or momentum space. It is defined by its expectations
for position and momentum and by its dispersion in either position or momen-
tum. The most important single example here is the Gaussian test function
that describes the time part of the wave function of a free particle:

ϕ̃τ (t) = F (t)
τ e

−ıE0t−ı
E2

0
2m τ− 1

2σ2
t

f
(t)
τ

(t−t0−E0
m τ)2

(522)

with dispersion factor:

f (t)
τ ≡ 1− ı

τ

mσ2
t

(523)

and normalization factor:

F (t)
τ ≡ 4

√
1
πσ2

t

√
1

f
(t)
τ

(524)

The sign of the complex part of a dispersion factor is negative for time,
positive for space:

f (x)
τ ≡ 1 + ı

τ

mσ2
x

(525)

The “complex dispersion” is:

σ2
t f

(t)
τ = σ2

t − ı
τ

m
(526)

So the absolute value of the complex dispersion or absolute dispersion is:

σ(t)2
τ ≡

√
σ2
t +

τ2

m2
(527)

If we are dealing with multiple Gaussian test functions we may make name
changes f → g,F → G, f → h,F → H to the dispersion and normalization
factors.

The expectation and dispersion of coordinate time t are given by:
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〈t〉 =
�
dtt|ϕ̃τ (t)|2 = t0

(∆t)2 =
〈
t2
〉
− 〈t〉2 = σ2

t

2〈
t2
〉

=
�
dtt2|ϕ̃τ (t)|2

(528)

The expressions for coordinate energy E are given by the Fourier transforms
of the expression for coordinate time t, e.g.:

ˆ̃ϕ0 (E) ≡ 4

√
1

πσ2
E

e
ıEt0−

(E−E0)2

2σ2
E (529)

With expectation and dispersion of coordinate energy E:

〈E〉 =
�
dEE

∣∣∣ ˆ̃ϕ0 (E)
∣∣∣2 = E0

(∆E)2 =
〈
E2
〉
− 〈E〉2 = σ2

E

2〈
E2
〉

=
�
dEE2

∣∣∣ ˆ̃ϕ0 (E)
∣∣∣2

(530)

In general we can switch between time/energy and space/momentum forms
by taking the complex conjugate and interchanging variables t↔ x. This is our
own small version of the CPT transformations.

As expressions like σ2
px

are cumbersome we sometimes replace them with
σ̂2
x ≡ σ2

px
taking implicit advantage of the fact that with our conventions σ2

x =
1
σ2

px

.
If we need to tag various Gaussian wave functions we may assign each specific

letter a, b, c as:

ϕ̃(a)
τ (t) = F (a)

τ e
−ıEat−ı

E2
a

2m τ− 1

2σ
(a)2
t

f
(a)
τ

(t−ta−Ea
m τ)2

(531)

We usually use ϕ for Gaussian test functions but may use a capital letter to
reduce notational clutter, as A ≡ ϕ(a).

In this text Gaussian test functions in three or four dimensions are always
simple products of single Gaussian test functions:

ˆ̄ϕτ (~p) = ϕ̂τ (px) ϕ̂τ (py) ϕ̂τ (pz) (532)

or:

ϕ̂τ (p) = ϕ̂τ (E) ϕ̂τ (px) ϕ̂τ (py) ϕ̂τ (pz) (533)

A.4 Acronyms

CM Classical Mechanics: all four dimensions treated as parameters.

SQM Standard Quantum Mechanics: quantum mechanics with the three space
dimensions treated as observables, time as a parameter.
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TQM Temporal Quantum Mechanics: SQM but with time treated as an ob-
servable on the same basis as the three space dimensions.

B Classical equations of motion

We verify that we get the classical equations of motion from the Lagrangian.
Broken out into time and space parts the Lagrangian is:

L
(
t, ~x, ṫ, ~̇x

)
= −1

2
mṫ2 +

1
2
m~̇x · ~̇x− qṫΦ (t, ~x) + qẋjAj (t, ~x)− 1

2
m (534)

The Euler-Lagrange equations are:

d

dτ

δL

δẋµ
− δL

δxµ
= 0 (535)

From the Euler-Lagrange equations we have:

mẗ = −qΦ̇ + qṫΦ,0 − qẋjAj,0 = −qẋj (Φ,j +Aj,0) (536)

mẍi = −qȦi − qtΦ,i + qẋjAj,i = −qṫAi,0 − qẋjAi,j − qΦ,iṫ+ qẋjAj,i (537)

Here the Roman indexes, i and j, go from 1 to 3 and if present in pairs are
summed over. We use an overdot to indicate differentiation by the laboratory
time τ .

By using:

~E = −∇Φ− ∂ ~A

∂t
(538)

~B = ∇× ~A (539)

we get:

mẗ = q ~E · ~̇x (540)

and:

m~̈x = qṫ ~E + q~̇x× ~B (541)

which are the familiar equations of motion of a classical particle in an electro-
magnetic field if we take τ as the proper time of the particle.

110



C Ehrenfest theorem

Ehrenfest's theorem provides a natural connection between quantum and clas-
sical mechanics. It shows that the expectation values of quantum mechanical
operators obey the classical equations. It demonstrates the consistency of SQM
with classical mechanics in the sense that the expectations in SQM obey the
classical equations of motion. We now derive it for TQM, adapting the standard
proofs Potter and Messiah [1958], Baym [1969], Liboff [1997], Merzbacher [1998]
to TQM.

The Hamiltonian acts as the generator of translations in laboratory time:

ı
∂

∂τ
ψ = Hψ (542)

With H:

H = − (p− qA)2 −m2

2m
= − 1

2m
(
(ı∂µ − qAµ) (ı∂µ − qAµ)−m2

)
(543)

We use this to compute the change of expectation values of an observable
operator O with laboratory time. The derivative of the expectation is given by:

d 〈O〉
dτ

=
〈O〉τ+ε − 〈O〉τ

ε
=

1
ε

(�
dqψ∗τ+εOτψτ+ε −

�
dqψ∗τOτψτ

)
(544)

The Hamiltonian operator is responsible for evolving the wave function in
laboratory time:

ψτ+e = exp (−ıεH)ψτ ≈ (1− ıεH)ψτ (545)

By taking advantage of the fact that the Hamiltonian is Hermitian:

d 〈O〉
dτ

=
1
ε

(�
dqψ∗τ (1 + ıεH)

(
O + ε

∂O

∂τ

)
(1− ıεH)ψτ − ψ∗τOψτ

)
(546)

and taking the limit as ε→ 0 we get:

d 〈O〉
dτ

= −ı 〈[O,H]〉+
〈
∂O

∂τ

〉
(547)

This simplifies when the operators are not dependent on laboratory time:

∂O

∂τ
= 0 → d 〈O〉

dτ
= −ı [O,H] (548)

This always the case for the operators of interest here. We assume that the
clock time relates only to the observer, not to the system observed!

With the operator assignments above we have commutation rules:
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[xµ, pν ] = −ıgµν (549)

or breaking this out:

[t, E] = −ı
[xj , pk] = ıδjk

(550)

If we apply this rule to the coordinate and momentum operators we get for
the coordinates:

ṫ = −ı

[
t,− (p− eA)2 −m2

2m

]
=
E − eΦ
m

(551)

~̇x = −ı

[
~x,− (p− eA)2 −m2

2m

]
=
~p− e ~A

m
(552)

which are the classical equations of motion (B), as required.

D Unitarity

Since there is a chance of the wave function “sneaking past” the plane of the
present, we have to be particularly careful to confirm unitarity.

To establish that the path integral kernel is unitary we need to establish
that it preserves the normalization of the wave function. The analysis in the
text only established this for the free case. We therefore need to confirm that
the normalization of the wave function is preserved in the general case. We
use a proof from Merzbacher Merzbacher [1998] but in four rather than three
dimensions.

We form the probability:

P ≡
�
d4xψ∗ (x)ψ (x) (553)

We therefore have for the rate of change of probability in time:

dP

dτ
=

�
d4x

(
ψ∗ (x)

∂ψ (x)
∂τ

+
∂ψ∗ (x)
∂τ

ψ (x)
)

(554)

The Schrödinger equations for the wave function and its complex conjugate are:

∂ψ

∂τ
= − ı

2m
∂µ∂µψ+

q

m
(Aµ∂µ)ψ+

q

2m
(∂µAµ)ψ+ ı

q2

2m
AµAµψ− ı

m

2
ψ (555)

∂ψ∗

∂τ
=

ı

2m
∂µ∂µψ

∗ +
q

m
(Aµ∂µ)ψ∗ +

q

2m
(∂µAµ)ψ∗ − ı

q2

2m
AµAµψ

∗ + ı
m

2
ψ∗

(556)
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We rewrite ∂ψ
∂τ and ∂ψ∗

∂τ using these and throw out canceling terms. Since the
probability density is gauge independent, we choose the Lorentz gauge ∂A = 0
to get:

dP

dτ
=

�
d4x

(
ψ∗
(
− ı

2m
∂µ∂µψ +

q

m
(A∂)ψ

)
+
( ı

2m
∂µ∂µψ

∗ +
q

m
(A∂)ψ∗

)
ψ
)

(557)
We integrate by parts; we are left with zero on the right:

dP

dτ
= 0 (558)

Therefore the rate of change of probability is zero, as was to be shown. And
therefore the normalization is correct in the general case.

Note this is a special case of Ehrenfest's theorem in TQM with the probabil-
ity P represented by the operator the number 1 (possibly the simplest operator
in quantum mechanics):

d 〈1〉
dτ

= −ı 〈[1,H]〉+
〈
∂1
∂τ

〉
= 0 (559)

where −ıH = ∂
∂τ and the rest as above.

E Gauge transformations

As noted in the text, the ambiguities in the normalization of the wave func-
tion may be seen as representing a kind of gauge transformation. We have all
the usual possibilities for gauge transformations. And we have in addition the
possibility of gauge transformations which are a function of the laboratory time.

To explore this, we write the wave function as a product of a gauge function
in coordinate time, space, and laboratory time and a gauged wave function:

ψ′τ (t, ~x) = eıqΛτ (t,~x)ψτ (t, ~x) (560)

If the original wave function satisfies a gauged Schrödinger equation:(
ı
∂

∂τ
− qAτ (x)

)
ψτ (x) = − 1

2m

(
(p− qA)2 −m2

)
ψτ (x) (561)

the gauged wave function also satisfies a gauged Schrödinger equation:

(
ı
∂

∂τ
− qA′

τ (x)
)
ψ′τ (x) = − 1

2m

(
(p− qA′)2 −m2

)
ψ′τ (x) (562)

provided we have:

A′
τ (x) = Aτ (x)− ∂Λτ (x)

∂τ
(563)
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and the usual gauge transformations:

A′µ = Aµ − ∂µΛτ (x) (564)

or:

Φ′ = Φ− ∂Λ
∂t

~A′ = ~A+∇Λ
(565)

If the gauge function Λ is not a function of the laboratory time (Λ = Λ (t, ~x))
then we recover the usual gauge transformations for Φ and ~A. On the other
hand, we could let the gauge depend on the laboratory time, perhaps using
different gauges for different parts of the problem in hand.

F Free wave functions and kernels

We here pull together many of the formulas for the free case for reference.
In general the free wave functions and kernels can be written as a coordinate

time part times a familiar non-relativistic part. The division into coordinate
time, space, and – occasionally – clock time parts is to some extent arbitrary.

F.1 Plane waves

Plane wave in coordinate time:

φ̃τ (t) =
1√
2π

exp
(
−ıE0t+ ı

E2
0

2m
τ

)
(566)

Plane wave in space:

φ̄τ (~x) =
1

√
2π

3 exp

(
ı~p0 · ~x− ı

~p0
2

2m
τ

)
(567)

The full plane wave is the product of coordinate time and space plane waves:

φτ (x) = φ̃τ (t) φ̄τ (~x) exp
(
ı
m2

2m
τ

)
=

1
4π2

exp (−ıp0x− ıf0τ) (568)

with definition of clock frequency:

f0 ≡ −
E2

0 − ~p0
2 −m2

2m
(569)

The equivalents in momentum space are δ functions with a clock time de-
pendent phase:
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ˆ̃
φτ (E) = δ (E − E0) exp

(
ı
E2

0
2mτ

)
ˆ̄φτ (~p) = δ(3) (~p− ~p0) exp

(
−ı ~p

2
0

2mτ
)

φ̂τ (p) = ˆ̃
φ0 (E) ˆ̄φ0 (~p) exp

(
−ım

2

2mτ
)

= δ(4) (p− p0) exp (−ıf0τ)

(570)

F.2 Gaussian test functions

By Morlet wavelet decomposition any normalizable wave function may be writ-
ten as a sum over Gaussian test functions. We have specified the conventions we
are using for Gaussian test functions above; here we look specifically at Gaus-
sian test functions as solutions of the free Schrödinger equation. There will be
some overlap with the previous.

F.2.1 Time and energy

Gaussian test function in coordinate time at clock time zero:

ϕ̃0 (t) ≡ 4

√
1
πσ2

t

e
−ıE0(t−t0)−

(t−t0)2

2σ2
t (571)

ˆ̃ϕ0 (E) ≡ 4

√
1

πσ2
E

e
ıEt0−

(E−E0)2

2σ2
E (572)

With these conventions, the energy and coordinate time dispersions are re-
ciprocals:

σE =
1
σt

(573)

Here we are using the “0” to label the constants in the wave function, to
indicate they are the ones at starting time τ0 = 0. It is often convenient to
thread a letter through the wave function to label the constants, e.g.:

ϕ̃a (t) ≡ 4

√
1

πσ
(a)2
t

e
−ıEa(t−ta)− (t−ta)2

2σ
(a)2
t (574)

ˆ̃ϕa (E) ≡ 4

√
1

πσ
(a)2
E

e
ıEta− (E−Ea)2

2σ
(a)2
E (575)

Gaussian test function for coordinate time as a function of clock time:

ϕ̃τ (t) = 4

√
1
πσ2

t

√
1

f
(t)
τ

e
−ıE0t−ı

E2
0

2m τ− 1

2σ2
t

f
(t)
τ

(t−t0−E0
m τ)2

(576)

with dispersion factor f (t)
τ ≡ 1− ı τ

mσ2
t
.
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and with expectation, probability density, and uncertainty (γ ≡ E
m ):

〈t〉 = t0 + E
mτ = t0 + v0τ = t0 + γτ

ρ̃τ (t) =
√

1
πσ2

t
exp

− (t−γτ)2

σ2
t

(
1+ τ2

m2σ2
t

)
(∆t)2 ≡

〈
t2
〉
− 〈t〉2 = σ2

t

2

∣∣∣1 + τ2

m2σ4
t

∣∣∣
(577)

In the non-relativistic case, if we start with t0 = τ , then we have 〈t〉 ≈ τ
throughout.

For longer clock times the uncertainty in coordinate time is proportional to
the uncertainty in the energy:

∆t ∼ τ

mσt
=

τ

m
σE (578)

Gaussian test function in energy:

ˆ̃ϕτ (E) ≡ 4

√
1

πσ2
E

e
ıEt0−

(E−E0)2

2σ2
E

+ıE2
2m τ

(579)

with expectation, probability density, and uncertainty:

〈E〉 = E0

ˆ̃ρτ (E) = ˆ̃ρ0 (E) =
√

1
πσ2

E

exp
(
− (E−E0)

2

σ2
E

)
(∆E)2 = σ2

E

2

(580)

F.2.2 Single space/momentum dimension

Gaussian test function in one space dimension at clock time zero:

ϕ̄0 (x) = 4

√
1
πσ2

x

e
ıp0(x−x0)−

(x−x0)2

2σ2
x (581)

and in momentum:

ˆ̄ϕ0 (p) = 4

√
1
πσ2

p

e
−ıpx0−

(p−p0)2

2σ2
p (582)

The space and momentum dispersions are reciprocal:

σp ≡
1
σx

(583)

When we have to consider the dispersion for all three space momentum we
reduce the level of nesting by writing:

σ̂x ≡ σpx
, σ̂y ≡ σpy

, σ̂z ≡ σpz
(584)
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Gaussian test function in one space dimension as a function of clock time:

ϕ̄τ (x) = 4

√
1
πσ2

x

√
1

f
(x)
τ

e
ıp0x− 1

2σ2
xf

(x)
τ

(x−x0−
p0
m τ)2−ı

p2
0

2m τ
(585)

The definition of the dispersion factor f (x)
τ = 1 + ı τ

mσ2
x τ

is parallel to that
for coordinate time (but with the opposite sign for the imaginary part).

Expectation, probability density, and uncertainty for x:

〈x〉 = x0 + px

m τ = x0 + vxτ

ρ̄τ (x) =
√

1
πσ2

1
exp

(
− (x−〈xτ 〉)2

σ2
x

)
(∆x)2 ≡

〈
x2
τ

〉
− 〈xτ 〉2 = σ2

x

2

∣∣∣1 + τ2

m2σ4
x

∣∣∣ (586)

and similarly for y and z.
As clock time goes to infinity, the dispersion in space scales as:

(∆x)2 ≈ τ̄2

2m2σ2
x

(587)

Negative x-momentum is movement to the left, positive to the right. As
we require the most complete parallelism between time and space, we therefore
have that positive energy corresponds to movement into the future, negative
into the past. As most of our wave functions have an energy of order:

E ∼ m+
~p2

2m
� 0 (588)

they are usually going into the future. As expected.
Gaussian test function for momentum in one dimension as a function of clock

time:

ˆ̄ϕτ (p) = 4

√
1
πσ2

p

e
−ıpx0−

(p−p0)2

2σ2
p

−ı p2

2m τ
(589)

and expectation, probability density, and uncertainty for p:

〈p〉τ = 〈p〉0 = p0

ˆ̄ρτ (p) = ˆ̄ρ0 (p) =
√

1
πσ2

p
exp

(
− (p−p0)2

σ2
p

)
(∆p)2 = σ2

p

2

(590)

F.2.3 Covariant forms

Usually we treat the case of four dimensions as a simple product of the cases of
the individual dimensions. But it is more appropriate in general to treat them
as a single covariant object.

We define the four dimensional dispersion Σ in position space at clock time
zero:
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Σµν0 ≡


σ2
t 0 0 0
0 σ2

x 0 0
0 0 σ2

y 0
0 0 0 σ2

z

 (591)

The determinant takes a simple form:

det Σ = σ2
t σ

2
xσ

2
yσ

2
z (592)

With this we have the wave function at clock time zero:

ϕ0 (x) = 4

√
1

π4det (Σ0)
e
−ıpµ

0 (x−x0)µ−
1
2 (x−x0)µ

Σµν
τ (x−x0)ν (593)

Four dimensional dispersion as a function of clock time τ :

Σµντ ≡


σ2
t f

(t)
τ = σ2

t − ı τm 0 0 0
0 σ2

xf
(x)
τ = σ2

x + ı τm 0 0
0 0 σ2

yf
(y)
τ = σ2

y + ı τm 0
0 0 0 σ2

zf
(z)
τ = σ2

z + ı τm


(594)

Four dimensional wave function as a function of clock time:

ϕτ (x) = 4

√
det (Στ )

π4det2 (Στ )
e
−ıpµ

0 (x−x0−vτ)µ−
1
2 (x−x0−vτ)µ

Σµν
τ (x−x0−vτ)ν

−ıf0τ (595)

with the obvious definition of the four velocity:

vµ ≡
pµ
m

(596)

In the general case, the wave function does not, of course, split into coordi-
nate time and space factors. But it may still be represented as a sum over basis
wave functions that do, via Morlet wavelet decomposition.

We have similar but simpler formulas in momentum space. In momentum
space at clock time zero:

ϕ̂0 (p) = 4

√√√√ 1

π4det
(
Σ̂0

)e−ıpx0− 1
2

ˆ(p−p0)µΣ
µν

(p−p0)ν (597)

and as a function of clock time:

ϕ̂τ (p) = 4

√√√√ 1

πdet2
(
Σ̂0

)e−ıpx0− 1
2

ˆ(p−p0)µΣ
µν

(p−p0)ν−ıω0τ = ϕ̂0 (p) exp (−ıf0τ)

(598)
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We define the momentum dispersion matrix Σ̂ as the reciprocal of the coor-
dinate space dispersion matrix Σ0:

Σ̂ ≡


σ̂2
t 0 0 0
0 σ̂2

x 0 0
0 0 σ̂2

y 0
0 0 0 σ̂2

z

 (599)

F.3 Free kernels

We list the kernels corresponding to the free Schrödinger equation in time. These
are retarded kernels going from clock time zero to clock time τ , so include an
implicit θ (τ).

F.3.1 Coordinate time and space

Kernel in coordinate time:

K̃τ (t′′; t′) =
√

ım

2πτ
exp

(
−ım (t′′ − t′)2

2τ

)
(600)

In three space we have the familiar non-relativistic kernel (e.g. Merzbacher
[1998]):

K̄τ (~x′′; ~x′) =
√
− ı

2πτ

3

exp

(
ım

(~x′′ − ~x′)2

2τ

)
(601)

The full kernel is:

Kτ (x′′;x′) = K̃τ (t′′; t′) K̄τ (~x′′; ~x′) exp
(
−ım

2
τ
)

(602)

Explicitly:

Kτ (x′′;x′) = −ı m2

4π2τ2
e−ım

(t′′−t′)2

2τ +ım
(~x′′−~x′)2

2τ −ım
2 τ (603)

F.3.2 Momentum space

Energy part:

ˆ̃Kτ (E′′;E′) = δ (E′′ − E′) exp

(
ı
E′2 −m2

2m
τ

)
(604)

Three momentum part:

~̂Kτ (~p′′; ~p′) = δ(3) (~p′′ − ~p′) exp

(
−ı (~p

′)2

2m
τ

)
(605)

Again, the same as the usual non-relativistic kernel.
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The full kernel is:

K̂τ (p′′ − p′) = ˆ̃Kτ (E′′;E′) ~̂Kτ (~p′′; ~p′) (606)

Spelled out:

K̂τ (p′′; p′) = δ(4) (p′′ − p′) exp

(
ı
E′2 − (~p′)2 −m2

2m
τ

)
(607)

or:

K̂τ (p′′; p′) = δ(4) (p′′ − p′) exp (−ıfp′τ) (608)

With definition of clock frequency as above:

fp ≡ −
E2 − ~p2 −m2

2m
(609)
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Figure 19: Clock time and coordinate time

“Atoms are completely impossible from the classical point of
view, since the electrons would spiral into the nucleus.” – Richard
P. Feynman Feynman et al. [1965]

G.1 Four dimensions and an approximation scheme

Naively we might appear to have a five dimensional coordinate system here:
clock time, coordinate time, and the three space dimensions. When this work
was presented at the 2018 International Assocation for Relativistic Dynamics
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(IARD) conference Dr. Asher Yahalom observed that this is potentially a bit
cumbersome.

Per subsequent discussion with Dr. Yahalom, it is more accurate to describe
it as four dimensions plus an approximation scheme.

Let's start with a sheet of four dimensional graph paper representing dis-
cretized space time. Alice is off to one side, drawing paths on it. She is interested
in the amplitude for a particle to get from A to B. And to compute this she
draws all possible paths from A to B, planning to sum them using the rules in
the text.

But Alice herself is a part of the universe she is observing.
Therefore we draw Alice on the left as a series of blue dots representing

her at successive clock ticks. At each clock tick she has a corresponding three
dimensional hyper-surface representing her rest frame. These are the horizontal
lines in the diagram. She is off to one side, because she is after all observing
the particle going from A to B, but she is on the same piece of four dimensional
graph paper because she is part of the same universe.

If she is using SQM to do the calculation then at each clock tick each of her
paths will slide side to side on the corresponding hyper-surface. But if she is
using TQM then the paths will also go forwards and backwards in time, going
off the current hyper-surface, often in quite elaborate ways.

If Bob is also present, we can represent him by a series of green dots on
the right with his own coordinate system. (We have left this off the illustration
because it would make it too busy. Please imagine Bob's green dots and hyper-
surfaces are present.) He will be looking at the same set of paths, but slicing
them up differently because he has in general a different set of three dimensional
hyper-surfaces.

And if we need to resolve the slight differences between Alice and Bob's
descriptions – per the discussion in the text (subsection 3.5) – we can call in
Vera in the V frame (violet dots of course) to provide the definitive story.

So far so good, we have only one four dimensional coordinate system with
different observers. Each observer has his or her clock time, but these clock
times are present, tick by tick, on the same piece of graph paper. And we have
well-defined rules for going from one observer's frame to another's.

The problem comes in when we try to reconcile the quantum descriptions
Alice uses for particles with the classical descriptions she uses for detectors,
emitters, or herself. We have an impedance mismatch between quantum and
classical descriptions. This is of course the problem of measurement.

G.2 Quantum descriptions and classical approximations

The critical observation here is Feynman's: there are no classical atoms. Since
the emitters, detectors, and observers are all made of atoms all are quantum
objects.

This means that there is no transition from a quantum to a classical realm.
Everything on both sides of the act of detection is a quantum system.

So what is going on here?
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Most of the systems we deal with can treated for all practical purposes
(FAPP) as if they were classical systems. It is only when we look at certain
parts of the system that we need to get down to the quantum level. When
we describe a particle being ejected from an atom we need to use a quantum
description. When we describe a particle in flight we need to use a quantum
description. When we describe its encounter with a detector we need to use a
quantum description. But once the detector has registered a click, we can use
classical approaches to describe the counting and processing of those clicks.

The rules for detection and emission are ways to navigate the associated
approximations. In a detector, the wave function is not collapsing, instead we
are passing from a quantum to a classical description. And in emission, the
particle is not originally classical, it is just that up to the starting gun, it can
be treated as if it were.

In human terms, picture Alice going thru passport control. Bob, now a
customs official (he gets around), stamps her passport with a visa stamp. She
then heads to her ultimate destination. Both Alice and Bob are – per Feynman –
quantum systems. Their previous and subsequent paths are unknown to official
customs. But we have that visa stamp and associated computer records. They
are the measurement. They certify that at time T position X with uncertainties
∆T and ∆X Alice and Bob encountered each other.

Since Bob's location is highly localized – he is in a customs booth, they are
not big – we treat this as a measurement of Alice's position. But the situation
is in reality completely symmetrical. We can think of it as Alice measuring Bob
or Bob measuring Alice. But for customs purposes only the visa stamp matters.
The visa stamp is the measurement.

Ultimately we must always be prepared to go down to the quantum level.
The quantum rules are decisive; the classical rules a mere useful approximation.
Even the visa stamp itself is made of atoms, of quantum mechanical objects.
But in some cases we can get away with a classical analysis.

The division between quantum and classical is a division of analysis. It is
not part of the physical universe, it is part of how we describe that universe –
allowing for the fact that we are a part of what we are describing.

G.3 Where, when, and to what extent?

But to take this point from the realm of philosophy to the realm of science
we need to throw some numbers into the mix, we need to answer the ques-
tions: “when, where, and to what extent does the classical approximation break
down?”

The rules in the Copenhagen interpretation are not specific. “Somewhere”
between where the particle is being described by quantum mechanics and where
it is detected, the particle goes through a “checkpoint Copenhagen”, where its
description collapses from the fuzziness of quantum mechanics to the determin-
ism and specificity of classical mechanics.

This is both a strength and a weakness of the Copenhagen interpretation.
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It is a strength because it let physicists get on with physics. And because it
does not try to “explain” what is going on.

But it is a weakness because the terms of the transition are not speci-
fied. Schrödinger's cat experiment is the most striking illustration of this point
Schrödinger [1980].

Decoherence provides part of the answer Omnès [1994], Giulini et al. [1996],
Heiss [2002], Joos [2003], Schlosshauer [2007]. But decoherence is not yet as
quantitative as one might like (although see Venugopalan, Qureshi, and Mishra
Venugopalan et al. [2019]).

It is possible that new physics plays a role in the transition. The Ghirardi,
Rimini, and Weber (GRW ) Ghirardi et al. [1986]approach and more generally
the continuous spontaneous localization (CSL) approaches Dickson [1998] hy-
pothesize additional physics. These alternatives are helpful in parameterizing
the transition, but have not had any experimental confirmation.

Meanwhile, the quantum cats continue to get bigger and bigger, less and
less microscopic Norte et al. [2016], Vinante et al. [2017]. At some point we will
actually be able to see the transition itself, or show that there is none.

TQM does not specifically address this question. We have taken the existing
rules as given. However the temporal fluctuations in TQM (see especially the
entropic estimate of the initial wave function 4.1.2) provide a source of “internal
decoherence” so would affect estimates of the size and rate of decoherence. (We
owe the phrase “internal decoherence” to Dr. Daniel Braun at the 2007 Feynman
Festival.)
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ical resonators for quantum optomechanics experiments at room tem-
perature. Physical Review Letters, 116(14):147202, 4 2016. URL
https://arxiv.org/pdf/1511.06235.

Roland Omnès. The Interpretation of Quantum Mechanics. Princeton Univer-
sity Press, Princeton, 1994. ISBN 0 691 03669 1.

M. Ossiander, F. Siegrist, V. Shirvanyan, R. Pazourek, A. Sommer, T. Latka,
A. Guggenmos, S. Nagele, J. Feist, J. Burgdörfer, R. Kienberger, and
M. Schultze. Attosecond correlation dynamics. Nature Physics, 13:280 EP –,
11 2016. URL file:///.file/id=6571367.1231173542.

128



Wolfgang Pauli. General principles of quantum mechanics.
Springer-Verlag, 1980. doi: 10.1007/978-3-642-61840-6. URL
http://www.springer.com/us/book/9783540098423.

Michael Edward Peskin and Daniel V. Schroeder. An in-
troduction to quantum field theory. Addison-Wesley Pub.
Co., Reading, Mass., 1995. ISBN 0201503972. URL
http://www.loc.gov/catdir/enhancements/fy0831/89027170-b.html
http://www.loc.gov/catdir/enhancements/fy0831/89027170-d.html.

J. Potter and Albert Messiah. Quantum Mechanics. Dover Publications, New
York, 1958.

Huw Price. Time’s Arrow and Archimedes’ Point. Oxford University Press,
New York, 1996. ISBN 0 19 510095 6.

Pierre Ramond. Field theory. Addison Wesley, 1990. ISBN 0 201 54611 6.

B. Reznik and Y. Aharonov. Time-symmetric formulation of quantum mechan-
ics. Phys. Rev. A, 52:2538–2550, 1995.

R. J. Rivers. Path integral methods in quantum field theory. Cambridge Univer-
sity Press, Cambridge [Cambridgeshire] ; New York, 1987. ISBN 0521259797.
URL http://www.loc.gov/catdir/description/cam032/86026861.html
http://www.loc.gov/catdir/toc/cam032/86026861.html.

Paul Roman. Introduction to quantum field theory. Wiley, New York,, 1969.
ISBN 0471731986.

J. J. Sakurai. Advanced Quantum Mechanics. Addison-Wesley, 1967. ISBN 0
201 06710 2.

Rahul Sawant, Joseph Samuel, Aninda Sinha, Supurna Sinha, and Ur-
basi Sinha. Non-classical paths in interference experiments. Phys. Rev.
Lett, 113:120406, 2014. doi: 10.1103/PhysRevLett.113.120406. URL
http://arxiv.org/abs/1308.2022.

Theodore Schick Jr. and Lewis Vaughan. How to Think About Weird Things:
Critical Thinking for a New Age. Mayfield Publishing Company, 1995.

P. A. Schilpp and Niels Bohr. Discussion with Einstein on Epistemological Prob-
lems in Atomic Physics, pages 200–241. The Library of Living Philosophers,
Evanston, 1949.

Maximilian A Schlosshauer. Decoherence and the quantum-to-classical tran-
sition. Springer, Berlin, 2007. ISBN 9783540357735 (hbk.). URL
http://www.loc.gov/catdir/enhancements/fy0814/2007930038-b.html.

Erwin Schrödinger. The present situation in quantum mechanics. Proceedings
of the American Philosophical Society, 124:323–38, 1980.

129



L. S. Schulman. Techniques and Applications of Path Integrals. John Wiley and
Sons, Inc., New York, 1981. ISBN 0 471 16610 3.

L. S. Schulman. Time’s arrows and quantum measurement. Cambridge Univer-
sity Press, New York, 1997. ISBN 0 521 56775 0.

Mark Swanson. Path Integrals and Quantum Processes. Academic Press, Inc.,
1992. ISBN 0 12 678945 2.

David Joshua Tannor. Introduction to quantum mechanics: a time-
dependent perspective. University Science Books, Sausalito, Calif.,
2007. ISBN 1891389238 (alk. paper) 9781891389238 (alk. paper). URL
http://www.loc.gov/catdir/toc/fy0708/2006043933.html.

Kip S. Thorne. Black Holes & Time Warps: Einstein’s Outrageous Legacy. W.
W. Norton, New York, 1994. ISBN 0 395 05505 0.

Kip S. Thorne. John archibald wheeler (1911-2008). Science, 320:1603, 2009.

Yusuf Z. Umul. General formulation of the scattered matter waves by a quantum
shutter. Turkish Journal of Physics, 33:1–9, 2009.

Anu Venugopalan, Sandeep Mishra, and Tabish Qureshi. Monitor-
ing decoherence via measurement of quantum coherence. Phys-
ica A: Statistical Mechanics and its Applications, 516:308–316, febru-
ary 2019. doi: https://doi.org/10.1016/j.physa.2018.10.025. URL
https://arxiv.org/pdf/1807.05021.

A. Vinante, R. Mezzena, P. Falferi, M. Carlesso, and A. Bassi. Im-
proved noninterferometric test of collapse models using ultracold can-
tilevers. Physical Review Letters, 119(11):110401, 9 2017. URL
https://arxiv.org/pdf/1611.09776.

Matt Visser. Physical wavelets: Lorentz covariant, singularity-free, finite energy,
zero action, localized solutions to the wave equation. Phys. Lett. A, 315:219–
224, 2003. URL http://xxx.lanl.gov/abs/hep-th/0304081v1.

Ricardo Weder. The electric aharonov-bohm effect. Journal of Mathematical
Physics, 52:052109, Jun 2011a. URL http://arxiv.org/abs/1006.1385v2.
Journal of Mathematical Physics vol 52 (2011) 052109.

Ricardo Weder. The electric aharonov-bohm effect. Journal of Mathe-
matical Physics, 52(5):052109, 2011b. doi: 10.1063/1.3592150. URL
http://scitation.aip.org/content/aip/journal/jmp/52/5/10.1063/1.3592150.

Steven Weinberg. Gravitation and Cosmology: Principles and Applications of
the General Theory of Relativity. John Wiley and Sons, Inc., New York, 1972.
ISBN 0 471 92567 5.

Steven Weinberg. Quantum Theory of Fields: Foundations, volume I. Cam-
bridge University Press, 1995a. ISBN 0 521 55001 7.

130



Steven Weinberg. Quantum Theory of Fields: Modern Applications, volume II.
Cambridge University Press, 1995b. ISBN 0 521 55002 5.

H Yabuki. Feynman path integrals in the young doubleslit experiment. Int J
Theor Ph, 25(2):159–174, 1986.

Hou Yau. Can time have a more dynamical role in a quantum field? 08 2015.
URL http://philsci-archive.pitt.edu/11622/.

A. Zee. Quantum field theory in a nutshell. Princeton University Press, Prince-
ton, N.J., 2010. ISBN 9780691140346 (hardcover alk. paper).

H. D. Zeh. The Physical Basis of the Direction of Time. Springer-Verlag, Berlin,
2001.

Jean Zinn-Justin. Path Integrals in Quantum Mechanics. Oxford University
Press, Oxford, 2005.

131


