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In quantum mechanics, time and space are handled very differently. For instance, 
assume we have a reference clock, a metronome, whose ticks establish a time !. At each 
tick of the clock we have a wave function  ψτ

x( ) . We have implicitly assumed that we 

have an exact knowledge of the position of the particle in time (our clock ticks may be 
as frequent as we like) but that its position in space is uncertain. It is difficult to 
reconcile this with relativity, which would require a near complete symmetry between 
time and space: if one is uncertain, then so must be the other.
" The resolution we look at here is to posit that the wave function should be 
extended to include time. At each clock tick !, we hypothesize that the wave function 
should be a function of time as well as of space:  ψτ

x( )→ψτ t, x( ) . We define the 

properties of this extended wave function by covariance. We show we do not need any 
additional assumptions to fully define the associated dynamics, to compute  ψτ +Δτ t, x( )  

given  ψτ t, x( ) .

" To do this we use path integrals. Normally the paths in path integrals are given 
as trajectories in space:  

xτ ; we extend the paths to include variation in time:  tτ ,
xτ . The 

resulting paths extend a bit into the future and into the past, as if time is fuzzy. We can 
think of this as the way a dog’s path is usually ahead or behind its master’s, but the 
average path is that of the master.
" The sums in path integrals are weighed by the action for each path, by the 

integral of the Lagrangian over time: 
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Interestingly enough, we can reuse a Lagrangian  L  used in the classical mechanics 
treatment of a single relativistic particle. To ensure convergence of the path integrals we 
use Morlet wavelet analysis rather than Fourier analysis. As Morlet wavelets are built 
from Gaussians this lets us – without loss of generality – analyze an arbitrary wave 
function as a sum over Gaussians.
" Usually path integrals are derived from the associated Schrödinger equation, but 
here it is more natural to derive the associated Schrödinger equation from the limit of 
the path integral as the duration of the clock tick goes to zero:

"
 
i ∂
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ψτ t, x( ) ≡ lim
Δτ→0
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We get: 
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 and the electromagnetic potential is 
 
Aµ = Φ,−


A( ) . The right side 

will be recognized as the Klein-Gordon equation with the minimal substitution. 
Therefore quantum time reduces to the Klein-Gordon equation in the limit as the 

variation of the wave function with the clock time goes to zero, when i ∂
∂τ

ψτ ≈ 0 . We 

can understand this as meaning that over longer periods of time, for relatively slowly 
varying potentials, the detailed variations in the wave function average out.  We call 
this the long, slow approximation and use it to define the transition from temporal 
quantization (the hypothesis that wave functions have extensions in time) to standard 
quantum theory.  With respect to time, temporal quantization is to standard quantum 
theory as standard quantum theory is to classical mechanics.
" We extend this approach to the multiple particle case (quantum electrodynamics) 
and then to the case of attractive potentials. 
" In the case of multiple particles, we get the usual results for the Feynman 
diagrams, with additional fuzziness in time. The loop calculations are particularly 
striking: in temporal quantization, we have an initial uncertainty in time Δt associated 

with any wave function. If we expand the loop results in powers of 1
Δt

 we get the usual 

ultraviolet divergences in the limit as Δt→ 0 . By the Heisenberg uncertainty principle, 
Δt→ 0⇒ ΔE→∞ , so the source of the familiar ultraviolet divergences is precisely the 
assumption that time is flat, that Δt = 0 . Similar results follow for the infrared 
divergences; they reappear when we take the limit as Δt→∞ , also an unphysical 
assumption.
" In the case of attractive potentials, the long, slow condition picks out the usual 
atomic orbitals. By dimensional arguments, the width in time of the resulting orbitals is 
of order the time taken by light to cross the atom, therefore of order attoseconds or less.
" As current experimental time resolutions are just getting down to the attosecond 
level, this both explains why we might not have already seen fuzziness in time and 
offers the possibility of detecting it.
" The greater simplicity of temporal quantization – manifest covariance & absence 
of singularities – suggests that it may be correct. Further, as temporal quantization is 
based on a strict application of covariance, experiments that refute it are likely to show 
results that are interesting in their own right: failures of Lorentz covariance, a local 
preferred frame for quantum mechanics, and the like.  With respect to the experimental 
investigation of temporal quantization, we are therefore in the position of a bookie who 
has so arranged the odds so that no matter which horse wins, he will still come out 
ahead.


