Put your minds in full upright position

I’ve been asked to do a talk on Time & Quantum Mechanics talk at the Library of Congress, as part of their What If series. This is Thursday, October 21st, 2010. Presumably I’ll do something involving both Time and Quantum Mechanics. But what?

At least I have the opening sentence ready:

Prepare for take off. Fold your assumptions away. Put your minds in full upright position.

A Very Short Introduction to Nothing

Was there a creation or was there always something? Could there even be nothing if there were no one to know there was nothing? The more I tried to understand these enigmas, the more I felt that I was at the edge of either true enlightenment or madness. — Frank Close

I’ve just finished the concise & entertaining “Nothing: A Very Short Introduction” by Frank Close. It’s part of the “Very Short Introduction” series from Oxford University Press. They are generally reliable. The obvious trap is for the author to talk more about his own views/work than his subject in general, but of the 20 I’ve read, only two have made this mistake (Hume & Ancient Warfare, if you must know).

Frank Close, who is a big name in nothing, in the physics of nothing that is, does a nice, very short job of introducing it to us, starting with the Rigveda’s Creation Hymn:

There was neither non-existence nor existence then.

There was neither the realm of space nor the sky which is beyond.

What stirred? Where?

up through the Higgs vacuum, the idea that the vacuum is not empty but is pervaded by the Higgs fields, which is responsible for giving particles mass. CERN was built partly to check this out & the cernistas are now hot on the trail of the Higgs.

I’m suspicious of the Higgs particle myself; it has a slightly kludgy feel to it, at least to my taste. I think particles have had a good run for their money over the last century & and now it is time for emergent phenomena to have a go. For instance, only a few percent of the mass of the protons & neutrons comes from the masses of their constituent quarks; most of their mass is really from the energy (via the familiar mass = E/c-squared) of the quantum dance of those quarks. If most mass comes from the energy stored in quantum interactions, could all mass be the result of such? Certainly an interesting question & and would leave us with one less variable to explain, with a slightly less massive problem.

In fact, I’d go further myself: space and time are difficult to understand, what if they are merely averages over the quantum wave function of the rest of the universe? and all of our universe is merely the friction of one part of the quantum wave function of the universe against another part. No mass, no space, no time, no vacuum, nothing but interactions.

Time & quantum mechanics at Chestnut Hill Book Fair

I’ll be speaking on Time & quantum mechanics at the Chestnut Hill Book Fair, Philadelphia, July 10th at noon.

This will be basically a reprise of my talk at Balticon except that as the audience is a general one, rather than a science fiction crowd, I’ll focus more on the basics, why time is a problem, why quantum mechanics is a problem, and why the two together are really a problem.

WordPress Themes