Category: Quantum Mechanics

The Quantum Internet and: Cthulhu Now!, Don’t get your time machine in a twist, and Warped Plotting

Google conducts largest chemical simulation on a quantum computer to date
Google’s Sycamore Quantum Computer

This year’s Philcon is going forward in person, in spite of Covid! It runs from Friday afternoon (11/19/2021) through Sunday afternoon (11/21/2021). Jabs & masks mandatory, but it will be great to see old friends in person. And make a few new as well. My science talk is:

The Quantum Internet: Hype or the next step

What do we mean by the quantum internet? Why do we need more than just quantum computing? What are quantum cryptography, quantum key distribution, quantum sensors? How are these concepts entangled? What are the advantages of the quantum internet? key problems? Who will get to use it? And do we have just a bunch of interesting tech that all have quantum in their name or can the whole be more than the sum of its parts?

This will be 1 pm Saturday November 20th at Philcon 2021

I did this at this year’s Capclave. Went well: some pretty deep questions from the audience at the end, always a good sign. I’ve updated — quantum computing does not stand still! — and looking forward to presenting in a few days. The picture is of Google’s Sycamore Quantum Computer, which recently achieved “Quantum Supremacy”. I will explain what that means!

I’m doing three panels as well:

The Post-Lovecraftian Cthulhu

How have HP Lovecraft’s ideas evolved in the hands of subsequent writers?

At this point, post-Lovecraftian Cthulhu is 99+% of Cthulhu. There are a lot of interesting directions here: from more mythos (Derleth for instance), more grim humor (Stross), high tech reboots (Delta Green), and a deeper (pun intended) take on Lovecraft’s racism (Lovecraft Country, Ballad of Black Tom). And we have uses of Cthulhu in music, film & TV (of course!), theater, and even in real science (the elongated dark region on Pluto nee Yuggoth called Cthulhu Macula!) if we are willing to include songwriters, playwrights, & scientists as part of the dark horde of subsequent writers.

This with Darrell Schweitzer (my co-editor on Tales From the Miskatonic University Library) and Stephanie Burke (writer, cosplayer, and a remarkable presence). I proposed the topic so have been unable to avoid the scourage of moderation.

At 10pm Friday, 11/19/2021

A Beginner’s Guide to Time Travel Paradoxes

You know not to remove a major historical figure, hand Thomas Edison a cell phone, or kill your grandfather. But is it even possible to travel into the past without changing anything?  So you go back to Chicago in 1920, and eat a hamburger in a diner. But, unbeknownst to you, that hamburger was destined to sit for six hours, spoil, and sicken someone else, who misses an important appointment, and… there goes the timestream. Would nature have a way of correcting this?

This with Michael Ventrella, George W. Young, and Russell Handelmann. Michael is currently editing a time travel anthology and is also moderating the panel. Michael’s a lot of fun; the other two I look forward to meeting.

At 2pm Saturday, 11/20/2021

Parsecs, Light Years, and the Speed of Plot

Warp?  Hyperspace?  Ion propulsion?  Improbability drive?  Is it necessary to sacrifice accuracy to maintain pacing?  Our panelists science the heck out of “velocity equals distance divided by time” as used in fiction.

This with Tobias F. Cabral (moderator), Anastasia Klimchynskaya, Tom Purdom. All familiar & valued co-panelists!

At 4pm Saturday, 11/20/2021

Quantum internet at Capclave 2021

Somewhat surprisingly, even tho the Washington DC Science Fiction community is hosting this year’s Worldcon, they are still doing their regular annual convention as well, Capclave 2021. Kudos for courage! And it is inperson as well (proof of vaccination required).

I’m doing a talk on the Quantum Internet this year at Capclave. I moderated a panel on the quantum internet at the most recent Balticon. Panel went well (video of the panel is up on youtube) thanks to my two fellow panelists Kevin Roche and Anne Gray. This is a great subject, so I figured a dedicated talk on this would be fun & helpful to people. Hence:

The Quantum Internet: Hype or the next step

What do we mean by the quantum internet? Why do we need more than just quantum computing? What are quantum cryptography, quantum key distribution, quantum sensors? How are these concepts entangled? What are the advantages of the quantum internet? key problems? Who will get to use it? And do we have just a bunch of interesting tech that all have quantum in their name or can the whole be more than the sum of its parts?

This will be 4pm Saturday October 2nd, 2021 at Capclave

I’m doing two panels as well:

Horrors found in the Editor’s Slush

I’ve copyrighted this story so you cannot steal it and publish it under your name. “And their names were Adam and Eve.” The manuscript written in crayon. Threats if the editor rejects a story. Considering that writers want their stories to be published, they do seem to do everything possible to discourage editors. What are some of the horrors you found in submissions? What should new writers know to avoid?

This with Walt BoyesNeil ClarkeDina Leacock

At 8pm Friday October 1st, 2021 at Capclave

A Century of Robots

The play RUR (Rossum’s Universal Robots) premiered in January 1921. This play was the first to use the word robot for a scientifically created mechanical worker. Why has the concept of robots been so popular? How have robots evolved in fiction?

This with Jennifer PoveyMichael SwanwickJoy Ward

At 11am Sunday October 3rd, 2021 at Capclave

Artificial intelligence, the quantum internet, and life and/or death

The 2021 Baltimore Science Fiction Convention (Balticon) runs this coming weekend. Virtual but real, if you get my drift. Convention is free; the programming looks very strong. Poke around & check off the interesting ones: I had great trouble keeping my choices down to one per time slot.

And, Balticon has recorded all of the talks: I’ve linked each talk to its video.

For my Balticon talk I’m doing:

Hands as seen by an artificial intelligence.
The Hands of AI

Artificial Intelligence: Past, Present, and Futures: Saturday, 2:30pm

From neural nets and genetic algorithms to facial recognition and deep fakes, artificial intelligence (AI) is everywhere today. What exactly do we mean by AI and how did it get where it is today? What are the benefits and risks of AI and how should we manage it going forwards?

Fast moving & fun topic!

Ethics and Robotics: Friday, 4pm

Isaac Asimov’s Three Laws formed one of the earliest ethics systems for robots and artificially-created beings, but aren’t necessarily accurate or complete. A hundred years after Asimov’s birth, what approaches are being taken in the practical development of robots? What is “real AI” and how far away are we from it?

With Anne Gray aka netmouse (moderator), Aaron M. Roth and Marie Vibbert

The Quantum Internet: Hype or the Next Step? Saturday, 7pm

What do we mean by the quantum internet? What are quantum cryptography, quantum key distribution, quantum sensors, and linked quantum computers? What are the advantages and key problems? Who will get to use it? And do we have just a bunch of interesting tech that all have quantum in their name or can the whole be more than the sum of the parts?

I’m moderating this one with Anne Gray and Kevin Roche (who is the quantum computing evangelist at IBM).

From “Mostly Dead” to Alive and Back Again: Sunday, 10pm

How is it that something like the coronavirus can be completely inert one moment and then spawning millions of copies of itself the next? How did intracellular obligate parasites — organisms that can’t survive without a host — manage to evolve into existence in the first place? What of transposons (jumping genes), viroids (the smallest infectious pathogens known), and the dreaded “giant” viruses? Join us as we dart back and forth across the line that separates life & death in biology!

I’m moderating this one as well, with the panelists: Dr. Jim Prego, Doug Dluzen, Anna Kashina, Pam Garrettson.

Time dispersion in time-of-arrival measurements

I will be presenting a paper “Time dispersion in time-of-arrival measurements” at the International Assocation for Relativistic Dynamics this coming Wednesday (6/3/2010). The conference was originally scheduled to be held in Prague but has been moved online because of COVID-19. It may still be held as a physical conference as well, we will see.

My own paper is a follow up to my “Time dispersion in quantum mechanics“, published last year as part of the Institute of Physics Conference Series. That took the hypothesis: the quantum wave function should extend in time as it does in space & worked out the implications. The new paper is about experimental tests of the hypothesis: how would we determine if this hypothesis is true. Since it is real science however I turned the question around & made it “how do we prove that the wave function does not extend in time”.

In the new paper I shift focus to the Heisenberg uncertainty principle (HUP), specifically to the Heisenberg uncertainty principle in time and energy. Einstein & Bohr both held it was true, in fact essential if quantum mechanics was to be consistent with relativity. Bohr’s demonstration that it was was the end of Einstein’s direct attempts to falsify quantum mechanics.

Note that the formulation “the Heisenberg uncertainty principle applies to time/energy as it does to space/momentum” is loosely equivalent to “the wave function extends in time as it does in space”. If the wave function extends in time, then we would get the HUP in time/energy as a side-effect. And the most direct tests of the wave function extending in time are really tests of the HUP in time/energy.

The test I primarily focus on is that if the wave function extends in time all measurements in the time dimension would be just a bit fuzzier. In particular, if you are measuring when a particle is detected, if you are measuring the time-of-arrival, then if the wave function is extended in time you expect to see it both sooner & later than otherwise expected.

The advantage of this as a test is that the additional fuzziness if present at all must be present everywhen. Any time-varying experimental setup can potentially serve as a test.

The main problem — somewhat to my surprise — was that we really don’t know how to predict the time-of-arrival in standard quantum mechanics, let alone quantum mechanics with time in play as well! I’m trying to make a pincer attack on time: left jaw — standard quantum mechanics (SQM), right jaw — quantum mechanics with time (TQM). I was focused on the right jaw, but found that actually it was the left jaw that was weak. So I had to backtrack & deal with this problem. Interesting. And this turned out to be the single trickiest bit in the paper.

After getting the left jaw in better shape, good enough to take a punch anyway, I did a recap of TQM. This was probably the 2nd trickiest bit of the paper: how do you describe a hypothesis that took over a hundred pages and nearly five hundred equations to work out in a just a few pages? I found the core ideas coming a bit clearer in my own head at least. That’s gotta be worth something.

Then the payoff bit, the actual tests, is only the last quarter of the paper. And after working out how the additional fuzziness in time plays out, I got to my favorite test: the single slit in time. This is the single cleanest test of the idea. Not an easy experiment however.

Really the best part of tests of TQM is that if it is proved true, great. But if it proved false it will be taking down one or two of its neighbors with it. TQM is built by applying the quantum rules to relativity (or applying relativity to the quantum rules). If it is false, one (or both) of those two has a problem. And that in turn means there are really no null experiments.

And if I know my experimentalists, there is nothing they like more than proving a bunch of theorists wrong. If I have setup the arguments correctly — we’ll see — then they are sure to break something. As the well-known quantum experimentalist Nicholas Gisin said to me a long time ago (I paraphrase, it was quite a long time ago) “Look, I don’t care what your theory of time is. Just give me something I can prove wrong!”

Capclave 2019 — Recap

Alice & her dog examine the mysteries of time and quantum mechanics, slide from my talk at Capclave 2019.

Had a great time at Capclave. It’s one of the smaller cons — slightly north of 300 people — and doesn’t have some of the usual con stuff like an art show or cosplay. But for precisely those reasons, you tend to have more of those repeated one-on-one conversations that, for me, are the real life of a con.

Had a good time at the five panels I was on. All were energetic & held the audience.

Technospeed — is technology moving too far too fast? — was the first (Friday evening), with the smallest audience. It was hard to know what to do with the subject, a tad too broad I suspect. Much of the discussion focused on AI, a better subject. (I may take AI that for my big talk next year.) Not a bad panel, with that said: we had a lot of fun with Kurzweil’s Singularity and related topics.

My next two panels (both Saturday), The Coming Civil War & Failed SF Predictions, both had Tom Doyle as moderator. He did a great job, particularly with the Coming Civil War, where he asked the assembled panelists how they would treat present various scenarios from a fictional point of view. How would you tell the story of cities war with the country side? and so on. Kept the conversation from degenerating into what they thought of the [insert-derogatory-noun]-in-chief.

I had a bit of fun with Failed SF Predictions, bringing in some books of pulp age cover art: jet packs, menacing octopi, orbiting cities, threatening robots, giant computers, and attacking space fleets, … The role of women in SF in the days of the pulps is nothing like what it is in the real world today; a lot of the Failed SF Predictions chosen were about gender issues. Not even the first wave of feminist SF writers — LeGuin, Joan Vinge, Joanna Russ, … — fully anticipated how much the field would evolve.

Sunday my first panel was on Secrets of the Dinosaurs. The other three panelists were the GOH Robert Sawyer (author of the Far-Seer trilogy of dinosaur novels), Michael Brett-Surman (Collections Manager of the National Dinosaur Collection at the Smithsonian and co-author/editor of several dinosaur books with Dr. Thomas R. Holtz) and Dr. Thomas R. Holtz (who is the T. Rex of T. Rex scholarship). Being on a dino panel with these three was like being a small mammal in the Jurassic. The primary objective is to not get underfoot and squashed. All three are immensely polite & courteous individuals, who would never think to squash a small mammal who wandered on to the planet panel. I took advantage — as the designated amateur — to ask about dino parental care, how did hadrosaurs defend themselves against a T. Rex (rather easily — those tails are not just ornamental!), and my final q: if dinosaurs lived in groups & relied on visual & auditory display, did they have barn-dances?

My final panel was Exoplanets. My fellow panelists (Inge Heyer & Edward Lerner) were both expert & I had done a fair amount of swotting, so we had a good time going over rogue planets between the stars, planets made of diamond, life within the hidden seas, and various methods of finding new exoplanets — the total of confirmed exoplanets is 4000 & counting!

And my Time Dispersion in Quantum Mechanics talk went well (Saturday afternoon). I had a couple of practice run-thrus with a “volunteer” audience, which left it leaner, shorter, and easier to follow. Same content, but no math (except E=mc-squared, which is so familiar it doesn’t count). Talk went well, good audience and great questions: some I answered there, some I dealt with in the hall discussions, and one or two I had to admit “that’s one for the experimentalists!”

And my thanks to Brent Warner of NASA, who corrected — with great politeness — a couple of soft spots in the presentation. I will incorporate into the next iteration, in two weeks as it happens at Philcon.

And the next morning I got what I think is the best compliment I have ever received: the father of a 10th grader said his daughter was so inspired by my talk she is thinking of going into physics & quantum mechanics. “Here’s my email; tell her to feel free to follow up!” Yes!

Time & QM at Balticon 2019

I did my “Time dispersion in quantum mechanics” paper as a popular talk at Balticon 2019 this last Saturday. Very energetic audience; talk went well. The audience had fun riffing on the time & quantum mechanics themes. And gave a round of applause to “quantum mechanics”. That doesn’t happen often. Post talk, I spent the next hour and a half in the hallway responding to questions & comments from attendees. And afterwards I ran into a woman who couldn’t get in because there was no standing room left. I think the audience liked the subject, liked the idea of being at the scientific edge, & was prepared to meet the speaker half way. So talk went well!

Thanks to Balticon for taking a chance on a very technical subject! and to all the attendees who made the talk a success.

So I’m hoping to do the talk for Capclave (DC science fiction convention) & Philcon (Philadelphia science fiction convention) in the fall.

My Balticon talk was basically a translation from Physics to English of my long paper of the same title, keeping the key ideas but doing everything in words & pictures, rather than equations.

Balticon will be publishing the video of the Balticon talk at some point. I developed the talk in Apple’s Keynote. I have exported to Microsoft Powerpoint and to Adobe’s PDF format. The advantage of the two slide presentation formats is that you can see the builds.

The long paper the talk was taken from was just published last week, by the Institute of Physics as part of their Conference Proceedings series. And the week before, I did a fairly technical version of the paper as a virtual (Skype) talk for the Time & Time Flow virtual conference. This is online on Youtube, part of the Physics Debates series.

Is time fuzzy?

Alice’s Past is Bob’s Future. And vice versa. Both are bit fuzzy about time.

“Time dispersion and quantum mechanics”, my long paper — long in page count & long in time taken to come to completion — has just been accepted for publication in the peer-reviewed Proceedings of the IARD 2018. This will be has been published as part of the IOP Science’s Journal of Physics Conference Series.

I had earlier presented this as a talk at the IARD 2018 conference in June 2018 in Yucatan. The IARD (International Association for Relativistic Dynamics) asked the conference participants if they would submit papers (based on the talks) for the conference proceedings. No problem; the talk was itself based on a paper I had just finished. Of course the paper had more math. Much much more math (well north of 500 equations if you insist).

Close review of the talk revealed one or two soft spots; fixing them consumed more time than I had hoped. But I submitted — on the last possible day, November 30th, 2018. After a month and a bit, the two reviewers got back to me: liked the ideas, deplored the lack of sufficient connection to the literature, and in the case of Reviewer #1, felt that there were various points of ambiguity and omission which needed attention.

And right they were! I spent a few rather pleasant weeks diving into the literature; some I had read before, some frankly I had not given the attention that must be paid. I clarified, literated, disambiguated, and simplified over the next six or seven weeks, submitting a much revised version on Mar 11th this year. Nearly ten per cent shorter. No soft spots. Still a lot of equations (but just south of 500 this time). Every single one checked, rechecked, & cross-checked. And a few fun bits, just to keep things not too dry. Submitted feeling sure that I had done my best but not sure if that was best enough.

And I have just this morning received the very welcome news it will be joining the flock of accepted submissions headed for inclusion in the conference proceedings. I am best pleased.

As to the title of this blog post, my very long paper argues that if we apply quantum mechanics along the time dimension — and Einstein & even Bohr say we should! — then everything should be just a little bit fuzzy in time. But if you title a paper “Is time fuzzy?”, you can say farewell to any chance of acceptance by a serious publication.

But the point is not that time might be fuzzy — we have all suspected something of the kind — it is that this idea can be worked out in detail, in a self-consistent way, in a way that is consistent with all experimental evidence to date, in a way that can be tested itself, and in a way that is definitive: if the experiments proposed don’t show that time is fuzzy, then time is not fuzzy. (As Yoda likes to say: fuzz or no fuzz, there is no “just a little-bit-fuzzy if you please”!)

In any case, if you are going to be down Baltimore way come this coming Memorial Day weekend I will be doing a popular version of the paper at the 2019 Baltimore Science Fiction convention: no equations (well almost no equations), some animations, and I hope a bit of fun with time!

The link at the start of this post points to a version formatted for US Letter, with table of contents & page numbers. The version accepted is the same, but formatted for A4 and without the TOC and page numbers (that being how the IOP likes its papers formatted). For those who prefer A4:


Is time an observable? or is it a mere parameter?

I’ve just put my long paper “Time dispersion and quantum mechanics” up on the physics archive.   If you are here, it is very possibly because you have at one point or another talked with me about some of the ideas in this paper and asked to see the paper when it was done.  But if you just googled in, welcome!

The central question in the paper is “is time fuzzy? or is it flat?” Or in more technical language, “it time an observable? or is it a mere parameter?”

To recap, in relativity, time and space enter on a basis of formal equivalence. In special relativity, the time and space coordinates rotate into each other under Lorentz transformations. In general relativity, if you fall into a black hole time and the radial coordinate appear to change places on the way in. And in wormholes and other exotic solutions to general relativity, time can even curve back on itself.

For all its temporal shenanigans, in relativity everything has a definite position in time and in space.  But in quantum mechanics, the three space dimensions are fuzzy.  You can never tell where you are exactly along the x or y or z positions.  And as you try to narrow the uncertainty in say the x dimension, you inevitably (“Heisenberg uncertainty principle”) find the corresponding momentum increasing in direct proportion. The more finely you confine the fly, the fiercer it buzzes to escape. But if it were not for this effect, the atoms that make us — and therefore we ourselves in turn — could not exist (more in the paper on this).

So in quantum mechanics space is complex,  but time is boring. It is well-defined, crisp, moves forward at the traditional second per second rate.  It is like the butler Jeeves at a party at Bertie Wooster’s Drone’s Club:  imperturbable, stately, observing all, participating in nothing. 

Given that quantum mechanics and relativity are the two best theories of physics we have, this curious difference about time is at a minimum, how would Jeeves put it to Bertie?, “most disconcerting sir”.

Till recently this has been a mere cocktail party problem: you may argue on one side, you may argue on the other, but it is more an issue for the philosophers in the philosophy department than for the experimenters in the physics department.

But about two years ago, a team led by Ossiander managed to make some experimental measurements of times less than a single attosecond.    As one attosecond is to a second as a second is to the age of the universe, this is a number small beyond small.

But more critically for this discussion, this is roughly about how fuzzy time would be if time were fuzzy.  A reasonable first estimate of the width of an atom in time is the time it would take light to cross the atom — about an attosecond.

And this means that we can — for the first time — put to experimental test the question:  is time fuzzy or flat? is time an observable or a parameter?

To give the experimenters well-defined predictions is a non-trivial problem. But it’s doable. If we have a circle we can make some shrewd estimates about the height of the corresponding sphere.  If we have an atomic wave function with well-defined extensions in the three space dimensions, we can make some very reasonable estimates about its extent in time as well.

The two chief effects are non-locality in time as an essential aspect of every wave function and the complete equivalence of the Heisenberg uncertainty principle for time/energy to the Heisenberg uncertainty principle for space/momentum.

In particular, if we send a particle through a very very fast camera shutter, the uncertainty in time is given by the time the camera shutter is open. 

In standard quantum mechanics, the particle will be clipped in time.  Time-of-arrival measurements at a detector will show correspondingly less dispersion. 

But if time is fuzzy, then the uncertainty principle kicks in.  The wave function will be diffracted by the camera shutter. If the uncertainty in time is small, the uncertainty in energy will be large, the particle will spread out in time, and time-of-arrival measurements will show much greater dispersion. 

Time a parameter — beam narrower in time.  Time an observable — beam much wider in time.

And if we are careful we can get estimates of the size of the effect in a way which is not just testable but falsifiable.  If the experiments do not show the predicted effects at the predicted scale, then time is flat.

Of course, all this takes a bit of working out.  Hence the long paper.

There was a lot to cover:  how to do calculations in time on the same basis as in space, how to define the rules for detection, how to extend the work from single particles to field theory, and so on. 

The requirements were:

  • Manifest covariance between time and space at every step,
  • Complete consistency with established experimental and observational results,
  • And — for the extension to field theory — equivalence of the free propagator for both Schrödinger equation and Feynman diagrams.

I’ve been helped by many people along the way, especially at the Feynman Festivals in Baltimore & Olomouc/2009; at some conferences hosted by QUIST and DARPA; at The Clock and the Quantum/2008 conference at the Perimeter Institute; at the Quantum Time/2014 conference Pittsburgh; at   Time and Quantum Gravity/2015 in San Diego; and most recently at the  Institute for Relativistic Dynamics (IARD) conference this year in Yucatan.  An earlier version of this paper was presented as a talk at this last conference & feedback from the participants was critical in helping to bring the ideas to final form.

Many thanks! 

The paper has been submitted to the IOP Conference Proceedings series.  The copy on the archive is formatted per the IOP requirements so is formatted for A4 paper, and with no running heads or feet.  I have it formatted for US Letter here.



Time Dispersion in Quantum Mechanics

If a quantum wave function goes through a single slit in time is it diffracted or clipped?

I will be speaking at the  2018 meeting of  the IARD — The International Association for Relativistic Dynamics  this afternoon.  Had a nice chat with the organizers & some early arrivals last night over coffee:  my talk clearly a good fit to the conference.

The decisive test is what happens if you send a quantum wave function through a single slit in time, say a very fast camera shutter.  If quantum mechanics does not apply (current generally accepted view), the wave function will be clipped — and the dispersion at a detector arbitrarily small.  If quantum mechanics does apply (proposal here), the wave function will be diffracted — and the dispersion at a detector arbitrarily great.

I’ve uploaded the talk itself  in several formats Time Dispersion in Quantum Mechanics – KeynoteTime Dispersion in Quantum Mechanics – Powerpoint, and Time Dispersion in Quantum Mechanics – PDF.

I’ve incorporated feedback from the IARD conference into the underlying paper Time Dispersion in Quantum Mechanics.  I’ve submitted this to the IOP Conference Proceedings series & have also uploaded it to the physics archive.  I hope it will be a useful contribution to the literature on time and quantum mechanics.

Your comments very welcome!

Time and Quantum Mechanics accepted at IARD conference

The physics paper I’ve been working on for several years, Time & Quantum Mechanics, has been accepted for presentation at a plenary session of the 2018 meeting of  the IARD — The International Association for Relativistic Dynamics. I’m very much looking forward to this:  the paper should be a good fit to the IARD’s program.

Abstract:

In quantum mechanics the time dimension is treated as a parameter, while the three space dimensions are treated as observables.  This assumption is both untested and inconsistent with relativity.

From dimensional analysis, we  expect quantum effects along the time axis to be of order an attosecond.  Such effects are not ruled out by current experiments.  But they are large enough to be detected with current technology, if sufficiently specific predictions can be made.

To supply such we use path integrals.  The only change required is to generalize the usual three dimensional paths to four.  We treat the single particle case first, then extend to quantum electrodynamics.

We predict a large variety of testable effects.  The principal effects are additional dispersion in time and full equivalence of the time/energy uncertainty principle to the space/momentum one.  Additional effects include interference, diffraction, resonance in time, and so on.

Further the usual problems with ultraviolet divergences in QED disappear.  We can recover them by letting the dispersion in time go to zero.  As it does, the uncertainty in energy becomes infinite — and this in turn makes the loop integrals diverge.  It appears it is precisely the assumption that quantum mechanics does not apply along the time dimension that creates the ultraviolet divergences.

The approach here has no free parameters; it is therefore falsifiable.  As it treats time and space with complete symmetry and does not suffer from the ultraviolet divergences, it may provide a useful starting point for attacks on quantum gravity.

WordPress Themes