
Time dispersion in quantum mechanics

John Ashmead

March 31, 2019

Visiting Scholar, University of Pennsylvania

jashmead@seas.upenn.edu

Abstract

In quantum mechanics the time dimension is treated as a parameter,
while the three space dimensions are treated as observables. This assump-
tion is both untested and inconsistent with relativity. From dimensional
analysis, we expect quantum effects along the time axis to be of order
an attosecond. Such effects are not ruled out by current experiments.
But they are large enough to be detected with current technology, if suf-
ficiently specific predictions can be made. To supply such we use path
integrals. The only change required is to generalize the usual three di-
mensional paths to four. We predict a large variety of testable effects. The
principal effects are additional dispersion in time and full equivalence of
the time/energy uncertainty principle to the space/momentum one. Ad-
ditional effects include interference, diffraction, and entanglement in time.
The usual ultraviolet divergences do not appear: they are suppressed by
a combination of dispersion in time and entanglement in time. The ap-
proach here has no free parameters; it is therefore falsifiable. As it treats
time and space with complete symmetry and does not suffer from the ul-
traviolet divergences, it may provide a useful starting point for attacks on
quantum gravity.
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“Wheeler’s often unconventional vision of nature was grounded
in reality through the principle of radical conservatism, which he ac-
quired from Niels Bohr: Be conservative by sticking to well-established
physical principles, but probe them by exposing their most radical
conclusions.” – Kip Thorne [109].

“You can have as much junk in the guess as you like, provided
that the consequences can be compared with experiment.” – Richard
P. Feynman [37]

1 Introduction

1.1 Should the wave function extend in time as it does in
space?

In relativity, time and space enter on a basis of formal equivalence. In special
relativity, the time and space coordinates rotate into each other under Lorentz
transformations. In general relativity, the time and the radial coordinate change
places at the Schwarzschild radius (for instance in Adler [3]). In wormholes and
other exotic solutions to general relativity, time can even curve back on itself as
in Gödel or Thorne [44, 108].

But in quantum mechanics “time is a parameter not an operator” (Hilgevo-
ord [49, 50]). This is clear in the Schrödinger equation:

ı
d

dτ
ψτ (~x) = Ĥψτ (~x) (1.1)

Here the wave function is indexed by time: if we know the wave function at time
τ we can use this equation to compute the wave function at time τ + ε. The
wave function has in general non-zero dispersion in space, but is always treated
as having zero dispersion in time. This would appear to be inconsistent with
special relativity.

Alice( ) tAlice, xAlice( )

Bob(
) t Bob

, x Bob

(
)

Alice’s future/
Bob’s Past

Alice’s past/
Bob’s future

Alice & Bob
both see this as future

space/Alice

tim
e/

Al
ic

e

tim
e/B

ob

space/Bob

Alice & Bob
both see this as Past

Figure 1.1: Wave functions for Alice and Bob
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Consider Alice in her laboratory, her co-worker Bob jetting around like a fu-
sion powered mosquito. Both are studying the same system but with respective
wave functions:

ψ(Alice) (tAlice, xAlice)
ψ(Bob) (tBob, xBob)

(1.2)

Alice and Bob center their respective wave functions on the particle:

〈tAlice〉 = 〈tBob〉 = 0
〈xAlice〉 = 〈xBob〉 = 0 (1.3)

These are distinct wave functions but give the same predictions for all ob-
servables. And do so to an extremely high degree of reliability.

But at Alice’s time zero, Bob’s wave function extends into her past and
future. And at Bob’s time zero her wave function extends into his past and
future.

There are at least two problems here.
One is that in quantum mechanics there is a strict “plane of the present”.

The quantum mechanical wave function is non-localized in space but is strictly
localized in time. What if Alice decided to work with Bob’s wave function,
rather than her own? She will get by hypothesis all the same predictions, but
will be using a wave function that from her point of view slops into past and
future.

The other is that from the point of view of special relativity, there should
not be a strict “plane of the present” in the first place. We should be able to
rotate between the four dimensional references frames of Alice and Bob as easily
as we rotate between references frames for the three space dimensions.

What happens if we shift to four dimensional wave functions?

ψ (~x) → ψ (t, ~x) (1.4)

Assume the coordinate systems for Alice and Bob are related by a Lorentz
transformation Λ:

x(Bob) = Λx(Alice) (1.5)

Then their wave functions can be related by a Lorentz transformation of
their coordinates:

ψ(Bob)
(
x(Bob)

)
= ψ(Alice)

(
Λx(Alice)

)
(1.6)

and matters are much more straightforward.
We make this our basic hypothesis: the quantum mechanical wave function

should be extended in the time direction on the same basis as it is extended along
the three space dimensions.

We are playing a “game of if” here: we will push the idea as hard as we can
and see what breaks. We are not going to argue that this is or is not true. We
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are going to look for experimental tests and then let the experimentalists decide
the question.

There are two principal effects:

1. Dispersion in time appears on same basis as dispersion in space. Physical
wave functions are always a bit spread out in space; they will now also be
a bit spread out in time.

2. The uncertainty principle for time/energy is treated on same basis as the
uncertainty principle for space/momentum. If a particle’s position in time
is well-defined, its energy will highly uncertain and vice versa.

1.1.1 Dispersion in time

If the wave functions normally have an extension in time then every time-specific
measurement should show additional dispersion in time.

Suppose we are measuring the time-of-arrival of a particle at a detector.
Define the average time-of-arrival as:

〈
τ (TOA)

〉
≡

∞∫
−∞

dττp(TOA) (τ) (1.7)

with an associated uncertainty:

〈
∆τ (TOA)

〉
≡

√√√√√ ∞∫
−∞

dττ2p(TOA) (τ)−
〈
τ (TOA)

〉2 (1.8)

The probability distribution for the particle will normally be spread out in
space, so its arrival times will also be spread out, depending on the velocity of
the particle and its dispersion in space.

But if it also has a dispersion in time, then part of the wave function will
reach the detector -- thanks to the fuzziness in time -- a bit sooner and also a
bit later than otherwise expected. There will be an additional dispersion in the
time-of-arrival due to the dispersion in time.

As we will see (subsection 4.3), at non-relativistic speeds, the dispersion in
the time-of-arrival is dominated by the dispersion in space, so this effect may
be hard to pick out. At relativistic speeds, the contributions of the space and
time dispersions can be comparable.

1.1.2 Uncertainty principle for time and energy

Of particular significance for this work are differences in the treatment of the
uncertainty principle for time/energy as opposed to that for space/momentum.

In the early days of quantum mechanics, these were treated on same basis.
See for instance the discussions between Bohr and Einstein of the famous clock-
in-a-box experiment [99] or the comments of Heisenberg in [47].
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In later work this symmetry was lost. As Busch [15] puts it “. . . different
types of time energy uncertainty can indeed be deduced in specific contexts, but
. . . there is no unique universal relation that could stand on equal footing with
the position-momentum uncertainty relation.” See also Pauli, Dirac, and Muga
[89, 24, 83, 84].

There does not appear to be any experimental test of this or observational
evidence for it; it is merely the way the field has developed.

That is not to say that there are not uncertainties with respect to time, but
they are side effects of other uncertainties in quantum mechanics. For instance,
if a particle is spread out in space, moving to the right, and going towards a
detector at a fixed position, its time-of-arrival will have a dispersion in time.
But this is a side-effect of the dispersion in space.

Now consider a particle going through a narrow slit in time, for instance a
camera shutter. Its wave function will be clipped in time. If the wave function
is not extended in time, then the wave function will merely be clipped: the
resulting dispersion in time at detector will be reduced.

But if the wave function is extended in time and the Heisenberg uncertainty
principle applies in time/energy on the same basis as with space/momentum,
then an extremely fast camera shutter will give a small uncertainty in time at
the gate:

∆t→ 0 (1.9)

causing the uncertainty in energy to become arbitrarily great:

∆E ≥ 1
∆t

⇒ ∆E →∞ (1.10)

which will in turn cause the wave function to be diffracted, to fan out in time,
and the dispersion in time-of-arrival to become arbitrarily great.

1.1.3 A necessary hypothesis

This question does not appear to have been attacked directly. As noted, the as-
sumption that the wave function is not extended in time seems to have crept into
the literature of its own, without experimental test or observational evidence.

To make an experimental test of this question we have to develop predictions
for both branches:

1. Assume the wave function is not extended in time. Make predictions about
time-of-arrival and the like.

2. Assume the wave function is extended in time. Make equivalent predic-
tions.

3. Compare.

We have to develop both branches in a way that makes the comparison straight-
forward.
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Further, to make the results falsifiable we have to develop the extended-in-
time branch in a way that is clearly correct. A null result should show that the
wave function is not extended in time.

These objectives drive what follows.

1.1.4 Literature

The literature for special relativity and for quantum mechanics is vast. Our
focus is on the critical intersection of the two. References of particular interest
here include:

• Stueckelberg & Feynman’s original papers: [105, 104, 31, 33, 32, 34].

• Reviews of the role of time, Schulman, Zeh, Muga, Callender: [103, 120,
83, 84, 16].

• Block universe picture: Parmenides, Barbour, Price: [67, 91, 10].

• Cramer’s transactional interpretation: [18, 19, 64, 20].

• The time symmetric quantum mechanics of Aharonov and Reznik: [4, 93].

• The relativistic dynamics program of Horwitz, Piron, Land, Collins, and
others: [55, 29, 26, 27, 72, 53, 28, 54]. This program is a natural outgrowth
of Stueckelberg & Feynman’s work.

Our approach here may be understood as falling within the relativistic dy-
namics framework, but with the emphasis placed on the “coordinate time”
rather than the “evolution parameter” aspects of that program. We will discuss
this in detail once an appropriate foundation has been laid.

1.2 Order of magnitude estimate

Has this hypothesis has already been falsified? Quantum mechanics has been
tested with extraordinary precision. Should associated effects have been seen
already, even if not looked for?

Consider the atomic scale given by the Bohr radius 5.3 10−11m. We take
this as an estimate of the uncertainty in space.

We assume the maximum symmetry possible between time and space. We
therefore infer that the uncertainty in time should be of order the uncertainty
in space (in units where c = 1).

Dividing the Bohr radius by the speed of light we get the Bohr radius in time
a0 = .177 10−18s, or less than an attosecond. .177as is therefore our starting
estimate of the uncertainty in time.

Therefore from strictly dimensional and symmetry arguments, the effects
will be small, of order attoseconds. This is sufficient to explain why such effects
have not been seen.
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At the same time, the time scales we can look at experimentally are now
getting down to the attosecond range. A recent paper by Ossiander et al [88]
reports results at the sub-attosecond level.

Therefore if we can provide the experimentalists with a sufficiently well-
defined target, the hypothesis should be falsifiable in practice.

1.3 Plan of attack

Look, I don’t care what your theory of time is. Just give me
something I can prove wrong. – experimentalist at the 2009 Feynman
Festival in Olomouc

1.3.1 Primary objective is falsifiability

It is not enough to extend quantum mechanics to include time. It is necessary
to do so in a way that can be proved wrong. The approach has to be so strongly
and clearly constrained that if it is proved wrong, the whole project of extending
quantum mechanics to include time is falsified.

Our requirements are therefore that we have:

1. the most complete possible equivalence in the treatment of time and space
– manifest covariance at every point at a minimum,

2. consistency with existing experimental and observation results,

3. and consistency between the single particle and multiple particle domains.

These requirements leave us with no free parameters. And having no free pa-
rameters means in turn that our hypothesis is falsifiable in principle.

To get to falsifiable in practice, we will look for the simplest cases that make
a direct comparison possible.

We will also look at points of principle that need to be addressed, to ensure
that the approach is not ruled out by, say, violations of unitarity.

We will use the acronym SQM for standard quantum mechanics. We will use
the acronym TQM for temporal quantum mechanics. By TQM we mean SQM
with time treated on the system basis as space: time just as much an observable
as the three space dimensions.

We do not mean by “temporal quantum mechanics” that time itself comes
in small chunks or quanta! For instance, there has been speculation that time is

granular at the scale of the Planck time: tPlanck ≡
√

h̄G
c5 ≈ 5.39116x10−44s =

5.39116x10−26as. Maybe it is, maybe it isn’t. But as this is 25 orders of
magnitude smaller than the times we are considering here, it is reasonable for
us to take time as continuous. And since space is treated by SQM as continuous,
and since the defining assumption of TQM is the maximum symmetry between
time and space, we are required to take time in TQM continuous.
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1.3.2 Extruding quantum mechanics in time

If you have worked with a CAD/CAM or 3D drawing program you are familiar
with the “extrude” operation, where you take a circle or square and extrude it
into the third dimension1. That is all we are going to do here. We are going to
use manifest covariance as the rule for going from three dimensions to four – so
that s2 = t2 − x2 − y2 − z2 is the invariant rather than r2 = x2 + y2 + z2 – but
the principle is the same.

The advantage is that with this approach we have no free parameters. The
moment we introduce a free parameter we put falsifiability at risk since we are
thereby creating a “fudge factor”. And any fudge factor might let us say “well
perhaps no effect was seen at scale x, but at smaller scale y, then we shall see!”.
We want our experimentalists to be able to say, “not seen, therefore not there!”

It might be that we should have done the extrude at a slight angle, extruding
our circle into, say, an oblate or prolate spheroid rather than a perfect one. But
this does not seriously impact falsifiability – such an oblate or prolate spheroid
should still have the same overall scale of a Bohr radius in time, it will still give
our experimentalist a fixed target. (We discuss possible meanings of “a slight
angle” in subsection 3.5 and again in the discussion).

We will use path integrals as our defining formalism. With the path integral
approach we can extrude the paths from three to four dimensions in a straight-
forward way, while leaving the rest of the machinery essentially untouched. With
other formalisms, it is less clear what “extrude” means. But once we have the
meaning of extrude worked out for path integrals, we can, as it were, rotate our
path integral formalism into other formalisms, seeing what “extruding quantum
mechanics in time” looks like as a Schrödinger equation or in quantum field
theory.

Our plan:

1.3.3 Single particle case

In the single particle case we will:

1. Generalize path integrals to include time as an observable.

2. Derive the corresponding Schrödinger equation as the short time limit of
the path integral.

3. Develop the free solutions. We will estimate the initial wave function, let
it evolve in time, and detect it. We will compute the dispersions of time-
of-arrival measurements in SQM and in TQM. In general the differences
are real but small.

4. Analyze the single and double slit experiments. The single slit in time
experiment provides the decisive test of temporal quantum mechanics. In
SQM, the narrower the slit, the less the dispersion in subsequent time-
of-arrival measurements. In TQM, the narrower the slit, the greater the

1See Abbott’s classic Flatland [1] for a delightful example.
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dispersion in subsequent time-of-arrival measurements. In principle, the
difference may be made arbitrarily great.

1.3.4 Multiple particle case

We will then extend TQM to include the multiple particle case, i.e. field theory.
We will show, using a toy model, that:

1. We can extend the usual path integral approach to include time as an
observable. The basis functions in Fock space extend in a natural way
from three to four dimensions, the Lagrangian is unchanged, and the usual
Feynman diagram expansions appear.

2. For each Feynman diagram in SQM we can compute the TQM equivalent.
Therefore any problem that can be solved using Feynman diagrams in
SQM can be solved in TQM.

3. The usual ultraviolet divergences do not appear (the combination of dis-
persion in time and entanglement in time contain them).

4. And that there are a large number of additional experimental effects to
be seen, including:

(a) wave functions anti-symmetric in time,

(b) correlations, entanglement, and interference in time,

(c) and forces of anticipation and regret.

1.3.5 Overall conclusions

With this done, we will argue in the discussion:

1. that TQM is not ruled out a priori.

2. that TQM is falsifiable. And given experimental work like Ossiander’s,
probably with current technology.

3. that TQM is a source of interesting experiments. Every foundational
experiment in SQM has an “in time” variant.

4. that TQM is a potential starting point for attacks on the quantum grav-
ity problem, since TQM is manifestly covariant and untroubled by the
ultraviolet divergences.

5. that as TQM is a straight-forward extrapolation of quantum mechanics
and special relativity, experiments that falsify TQM are likely to require
modification of our understanding of either quantum mechanics or special
relativity or both. Something will have to break.
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1.3.6 Limits of the current investigation

We do no more here than is required to establish that TQM is well-defined,
self-consistent, and falsifiable.

It will be clear from the development that the basic idea could be extended
in a number of directions; we review some of these in the concluding discussion.

The conventions used in this work are spelled out in A.

2 Path integrals

2.1 Overview

To extend quantum mechanics to include time we will take as our starting point
Feynman’s path integral approach to quantum mechanics [38, 102, 94, 106, 65,
63, 46, 121, 68, 119].

With the path integral approach, the only change we will need to make is
to generalize the paths from varying in three dimensions to varying in four.

To make clear what this means, consider the case of Alice walking her dog,
say from her front door to Bob’s.

Alice will take the shortest (classical) path from door to door.
But her dog will dart from side to side, now investigating a mailbox to the

left, now checking out a lamppost to the right. In fact, as a quantum dog he will
investigate all such paths simultaneously. While he will start at the same time
and place as Alice, and finish at the same time and place as Alice, in between
he will travel simultaneously along all possible paths.

But – in SQM – only along paths in space. At each tick of Alice’s digital
watch, her dog will be found off to the left or right, jumping up or digging down,
further along the path to Bob’s, or holding back for an important investigation.

But in TQM, the quantum dog can – and therefore will – advance into the
future and drop back into the past. So that tick by tick of Alice’s watch, her
dog’s paths will have to tracked in four dimensions rather than three.

This is harder to visualize, being out of our normal experience. So we develop
the analysis a bit formally, letting math take the place of an as yet undeveloped
intuition.

Path integrals, as the name suggests, are done by summing over all paths
from starting point to finish, weighting each path by the integral of the La-
grangian (the action) along it:

ψT (xT ) =
∫
Dxτ exp

ı T∫
0

dτL [x, ẋ]

ψ0 (x0) (2.1)

Piece by piece:

1. ψ0 (x0) is the initial wave function. We will be breaking these down into
sums over Gaussian test functions using Morlet wavelet analysis.
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2. τ is the clock time as given by Alice’s digital watch. We will break up the
paths into the bits from one clock tick to the next.

3. Dxτ represents the paths. Each path is defined by its coordinates at each
clock tick. In SQM, these are the values of xτ , yτ , zτ at each clock tick.
In TQM these are values of tτ , xτ , yτ , zτ at each clock tick.

4. L [x, ẋ] is a suitable Lagrangian. We will be using one that works equally
well for both SQM and TQM.

5. ı
T∫
0

dτL [x, ẋ] is the action, the integral over the Lagrangian taken path by

path.

6. And ψT (xT ) is the final wave function, the amplitude for the dog to arrive
at Bob’s door step.

We will look at:

1. What do we mean by τ the clock time?

2. What do we mean by the coordinate time t in t, x, y, z?

3. How do we define the initial wave function in a way that does not poten-
tially bias the outcome?

4. What Lagrangian shall we use?

5. How do we get the sums to converge?

6. Having gotten the sums to converge, how do we normalize them?

7. And what do all the pieces look like when we put them back together?

2.2 Laboratory time

We consider the action, the integral of the Lagrangian over time:

T∫
0

dτL [x, ẋ] (2.2)

In classical mechanics, we are free to take the parameter τ as any monoton-
ically increasing variable. We will get the same classical equations of motion in
any case.

A typical choice is to select τ as the proper time of the particle in question.
However this makes it difficult to extend the work to the multiple particle case,
where there are many particles and therefore many proper times in play.

Here we choose to use the time as shown on a laboratory clock. We take the
term laboratory time from Busch [15]. We will use the terms clock time and
laboratory time interchangeably.
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It is useful to visualize this clock as a metronome, breaking up the clock
time into a series of N ticks each of length ε. If τ = 0 at the source, and τ = T
at the detector, we have:

ε ≡ T

N
(2.3)

We will take the limit as N →∞ as the final step in the calculation.

2.3 Coordinate time

We visualize a four dimensional coordinate system coordinates t, x, y, z. We
will refer to t as coordinate time by analogy with the three coordinate space
dimensions: coordinate x, coordinate y, and coordinate z.

Paths are defined with reference to this coordinate system. If the time by
Alice’s watch is τ , then each path π will have a location at τ given by:

πτ (t, x, y, z) (2.4)

It may help to think of the coordinates as laid out on a piece of four di-
mensional graph paper. At a specific clock tick n, a specific path π will be
represented by a dot on a specific vertex on the four dimensional graph paper.
If we want to see the progress of the path with respect to clock time, we can
flip the series of pieces of graph paper like one of those old time flip movies.

If our graph paper has M grid lines in each direction, the number of vertices
on a page is M4, and the number of paths total is M4N . Each different sequence
of grid points counts as a distinct path.

The path integral measure Dx is usually defined by assigning a weight of
one to each distinct path, and then taking the limit as the spacing goes to zero.

Since coordinate time is on the same footing as the three space coordinates
it has a corresponding energy operator:

px ≡ −ı
∂

∂x
⇒ E ≡ ı

∂

∂t
(2.5)

We will refer to this as coordinate energy. It is not positive definite or
bounded from below. Since px can be positive or negative, by our controlling
requirement of covariance E can be positive or negative.

We discuss the relationship between clock time and coordinate time in F.

2.4 Initial wave function

We need a starting set of wave functions ψ0 at clock time τ = 0. We will
need wave functions that extend in both coordinate time and space. The usual
choices would be δ functions or plane waves.

In coordinate time these might be:

δ(t− t0) (2.6)

e−ıE(t−t0) (2.7)
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or in space:
δ(x− x0) (2.8)

eıp(x−x0) (2.9)

But neither δ functions nor plane waves are physical. Their use creates a risk
of artifacts.

More physical would be Gaussian test functions, for instance in coordinate
time:

ϕ (t) ≡ 4

√
1
πσ2

t

e
−ıE(t−t0)− (t−t0)2

2σ2
t (2.10)

or in space:

ϕ (x) ≡ 4

√
1
πσ2

x

e
ıp(x−x0)− (x−x0)2

2σ2
x (2.11)

But while Gaussian test functions are physically reasonable they are not com-
pletely general.

We can achieve both generality and physical reasonableness by using a basis
of Morlet wavelets [79, 17, 78, 61, 11, 14, 2, 113, 5, 8].

- 3 - 2 - 1 1 2 3

- 0.4

- 0.2

0.2

0.4

real

imaginary

Figure 2.1: Mother Morlet wavelet

Morlet wavelets are derived by starting with a “mother” wavelet:

φ(mother) (t) ≡
(
e−ıt − 1√

e

)
e

“
− t2

2

”
(2.12)

and scaling and displacing it with the replacement t→ t−l
s :

φsl (t) =
1√
|s|

(
e−ı(

t−l
s ) − 1√

e

)
e−

1
2 ( t−l

s )2

(2.13)
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Any normalizable function f can be broken up into wavelet components f̂ using:

f̂sl =

∞∫
−∞

dtφ∗sl (t) f (t) (2.14)

And then recovered using the inverse Morlet wavelet transform:

f (t) =
1
C

∞∫
−∞

dsdl

s2
φsl (t) f̂sl (2.15)

The value of C is worked out in [8].
Therefore we can write any physically reasonable wave function f in time in

terms of Morlet wavelets.
We may include space by using products of Morlet wavelets:

f̂stltsxlx =
∫
dtdxφ∗stlt

(t)φ∗sxlx
(x) f (t, x)

f (t, x) = 1
C2

∫
dstdlt
s2t

dsxdlx
s2x

φstlt (t)φsxlx (x) f̂stltsxlx
(2.16)

Clearly it would be cumbersome to track four dimensional Morlet wavelets
at every step.

Fortunately we do not need to perform the Morlet wavelet analyses; we
merely need the ability to do so. As each Morlet wavelet may be written as a
sum of a pair of Gaussians, Morlet wavelet analysis lets us write any physically
reasonable wave function as a sum over Gaussians. Provided we are dealing
only with linear operations – the case throughout here – we can work directly
with Gaussian test functions. By Morlet wavelet analysis the results will then
be valid for any physically reasonable wave functions.

2.5 Lagrangian

To sum over the paths – to construct the path integral – we will need to weight
each path by the exponential of the action, where the action is defined as the
integral of the Lagrangian over the laboratory time:

e
ı

TR
0
dτL(xµ,ẋµ)

(2.17)

We require a Lagrangian which:

1. Is manifestly covariant,

2. Produces the correct classical equations of motion,

3. And gives the correct Schrödinger equation.
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We would further prefer a Lagrangian which is the same for both SQM and
TQM. This will let us argue that we are treating SQM and TQM with the most
complete possible equality.

Somewhat surprisingly such a Lagrangian exists. In Goldstein’s well-known
text on classical mechanics [45] we find:

L (xµ, ẋµ) = −1
2
mẋµẋµ − qẋµAµ (x) (2.18)

The potentials are not themselves functions of the laboratory time τ . The
mass m is the rest mass of the particle, an invariant.

This Lagrangian is unusual in that it uses four independent variables (the
usual three space coordinates plus a time variable) but still gives the familiar
classical equations of motion (see B).

This Lagrangian therefore provides a natural bridge from a three to a four
dimensional picture.

The classical equations of motion are still produced if we add a dimensionless
scale a and an additive constant b to the Lagrangian:

− 1
2
amẋµẋµ − aqẋµAµ (x)− ab

m

2
(2.19)

The Lagrangian is therefore only determined up to a and b. The requirement
that we match the SQM results will fix a and b (subsection 3.3).

2.6 Convergence

How do we get the integrals over the paths to converge without breaking co-
variance?

We compute the path integral for the kernel by slicing the clock time into
an infinite number of intervals and integrating over each:

KBA = lim
N→∞

CN

∫ N−1∏
n=1

dtnd~xne
ıε

NP
j=1

Lj

(2.20)

with CN an appropriate normalization factor.
Consider the discrete form of the Lagrangian. We use a tilde to mark the

coordinate time part and an overbar to mark the space part:

Lj ≡ L̃tj + L̄~xj + Lmj (2.21)

L̃tj ≡ −a
m

2

(
tj − tj−1

ε

)2

− qa
tj − tj−1

ε

Φ (xj) + Φ (xj−1)
2

(2.22)

L̄~xj ≡ a
m

2

(
~xj − ~xj−1

ε

)2

+ qa
~xj − ~xj−1

ε
·
~A (xj) + ~A (xj−1)

2
(2.23)

Lmj ≡ −abm
2

(2.24)
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We are using the mid-point rule, averaging the scalar and the vector potentials
over the start and end points of the step, by analogy with the rule for three
dimensions (Schulman [102], Grosche and Steiner [46]).

Now look at a single step for the free case, vector potential Aµ zero:

∞∫
−∞

∞∫
−∞

dtjd~xe
−ıam (tj−tj−1)

2

2ε +ıam
(~xj−~xj−1)

2

2ε (2.25)

The formal tricks normally used to ensure convergence do not work here (e.g.
Kashiwa or Zinn-Justin [63, 121]). Perhaps the most popular of these is the use
of Wick rotation to shift to a Euclidean time:

τ → −ıτ (2.26)

This causes integrals to converge rapidly going into the future, but makes
the past inaccessible. For instance, factors of exp (−ıωτ) – which spring up
everywhere in path integrals – converge going into the future, but blow up
going into the past. If we are to treat time on the same footing as space – our
central assumption – then past and future must be treated as symmetrically as
left and right.

Another approach is to add a small convergence factor at a cleverly chosen
spot in the arguments of the exponentials. But if we attach a convergence
factor to t and x separately, we break manifest covariance. If we attach our
convergence factor to both, the fact that the t and x parts enter with opposite
sign means any convergence factor that works for one will fail for the other. We
could try attaching one to the mass m, but this also fails. For instance if a > 0
and we subtract a small factor of ıδ from the mass:

m→ m− ıδ (2.27)

the t integral converges but the x integral diverges.
We recall the kernel has meaning only when applied to a specific physical

wave function. If we break the incoming wave up into Morlet wavelets and then
into Gaussian test functions, we see that each integral converges by inspection,
the factor e−

1
2 ( t−l

s )2

ensures this.
So for physically significant wave functions, there is no problem in the first

place. Effectively we are taking seriously the point that the path integral kernel
is a distribution, only meaningful with respect to specific wave functions.

2.7 Normalization

Now that we have our path integrals converging, we have to normalize them. If
we start from the Schrödinger equation, the normalization is wired in. But in
path integrals we are a bit at sea.

We will here deal with the free case, verifying the normalization is correct
in the general case in C.
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The normalization factor for N steps we will call CN . The defining require-
ment is that, if the initial wave function is normalized to one, then with the
inclusion of CN , the final wave function will be normalized to one as well:∫

dt0d~x0

∣∣∣ψ0(t0, ~x0)
2
∣∣∣ = 1 →

∫
dtNd~xN

∣∣∣ψN (tN , ~xN )2
∣∣∣ = 1 (2.28)

If CN depends on the particular ψ0, then we have failed.
We now compute the factor of CN .

2.7.1 Normalization in time

We start with the coordinate time dimension only. Consider a Gaussian test
function centered on an initial position in coordinate time t̄0:

ϕ̃0 (t0) ≡ 4

√
1
πσ2

t

e
−ıE0t0− (t0−t̄0)2

2σ2
t (2.29)

We write the kernel for the time part as:

K̃τ (tN ; t0) ∼
∫ N−1∏

j=1

dtje
−ıam

NP
k=1

(tk−tk−1)
2

2ε (2.30)

The wave function after the initial integral over t0 is:

ϕ̃ε (t1) =
∫
dt0e

−ı am
2ε (t1−t0)2 ϕ̃0 (t0) (2.31)

or:

ϕ̃ε (t1) =

√
2πε
ıam

4

√
1
πσ2

t

√
1

f
(t)
ε

e
−ıE0t1+ı

E2
0

2am ε− 1

2σ2
t f

(t)
ε

(t1−t̄0− E0
am ε)2

(2.32)

with the dispersion factor f (t)
τ ≡ 1− ı τ

amσ2
t
.

The normalization requirement is:

1 =
∫
dt1ϕ̃

∗
ε (t1) ϕ̃ε (t1) (2.33)

The first step normalization is correct if we multiply the kernel by a factor of√
ıam
2πε . Since this normalization factor does not depend on the laboratory time

the overall normalization for N infinitesimal kernels is the product of N of these
factors:

CN ≡
√
ıam

2πε

N

(2.34)

Note also that the normalization does not depend on the specifics of the Gaus-
sian test function (the values of E0, σ2

t , and t̄0) so it is valid for an arbitrary
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sum of Gaussian test functions as well. And therefore, by Morlet wavelet de-
composition, for an arbitrary wave function.

As noted, the phase is arbitrary. If we were working the other way, from
Schrödinger equation to path integral, the phase would be determined by the
Schrödinger equation itself. The specific phase choice we are making here has
been chosen to help ensure the four dimensional Schrödinger equation is man-
ifestly covariant, see below. We may think of the phase choice as a choice of
gauge (see D).

Therefore the expression for the free kernel in coordinate time is (with t′′ ≡
tN , t′ ≡ t0):

K̃τ (t′′; t′) =
∫
dt1dt2 . . . dtN−1

√
ıam

2πε

N

e
−ı

NP
j=1

( am
2ε (tj−tj−1)

2)
(2.35)

Doing the integrals we get:

K̃τ (t′′; t′) =
√
ıam

2πτ
e−ıam

(t′′−t′)2

2τ (2.36)

and free wave functions in coordinate time:

ϕ̃τ (t) = 4

√
1
πσ2

t

√
1

f
(t)
τ

e
−ıE0t− 1

2σ2
t f

(t)
τ

(t−t̄0− E0
am τ)2

+ı
E2

0
2am τ

(2.37)

2.7.2 Normalization in space

We redo the analysis for coordinate time for space. We use the correspondences:

t→ x,m→ −m, t̄0 → x̄0, E0 → −p0, σ
2
t → σ2

x (2.38)

With these we can write down the equivalent set of results by inspection. Since
we will need the results below, we do this explicitly. We get the initial Gaussian
test function:

ϕ̄0 (x0) = 4

√
1
πσ2

x

e
ıp0x0− (x0−x̄0)2

2σ2
x (2.39)

free kernel:

K̄τ (x′′;x′) ∼
∫
dx1dx2 . . . dxN−1e

ı
NP

j=1

am
2ε (xj−xj−1)

2

(2.40)

and normalized kernel:

K̄τ (x′′;x′) =
√
− ıam

2πτ
eıam

(x′′−x′)2

2τ (2.41)

The kernel matches the usual (non-relativistic) kernel [35, 102] if a = 1.
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The wave function is:

ϕ̄τ (x) = 4

√
1
πσ2

x

√
1

f
(x)
τ

e
ıp0x− 1

2σ2
xf

(x)
τ

(x−x̄0− p0
am τ)2−ı p2

0
2am τ

(2.42)

with the definition of the dispersion factor f (x)
τ = 1 + ı τ

amσ2
x

parallel to that for
coordinate time (but with opposite sign for the imaginary part).

2.7.3 Normalization in time and space

The full kernel is the product of the coordinate time kernel, the three space
kernels, and the constant term e−ı

abm
2 τ . We understand x to refer to coordinate

time and all three space dimensions:

Kτ (x′′;x′) = −ı a
2m2

4π2τ2
e−

ıam
2τ (x′′−x′)2−ı abm

2 τ (2.43)

We have done the analysis only for Gaussian test functions, but by Morlet
wavelet decomposition it is completely general.

2.8 Formal expression

We now have the full path integral:

Kτ (x′′;x′) = lim
N→∞

∫
Dxe

ı
NP

j=1
Ljε

(2.44)

with the measure:

Dx ≡
(
−ıa2 m2

4π2ε2

)N N−1∏
n=1

d4xn (2.45)

and the discretized Lagrangian at each step:

Lj ≡ −am
(xj − xj−1)

2

2ε2
− aq

xj − xj−1

ε

A (xj) +A (xj−1)
2

− ab
m

2
(2.46)

We will show that a = b = 1 in the next section.

3 Schrödinger equation

3.1 Overview

The path integral and Schrödinger equation views are complementary. We need
both to fully understand either.

We derive the Schrödinger equation from the path integral by taking the
short time limit of the path integral form.
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By comparing the result to the Klein-Gordon equation – and making a rea-
sonable assumption about the long time evolution of the wave functions – we
are able to fix the additive and scale constants in the Lagrangian.

The resulting equation looks like the Klein-Gordon equation over short times
but shows some drift over longer times. We use some heuristic arguments to
estimate the scale of the long term drift as of order picoseconds, a million
times longer than the attosecond scale of the time dispersions we are primarily
concerned with here. We will therefore be able to largely ignore this drift.

With a, b defined, we look at a further problem. We have done the derivation
of path integral and Schrödinger equation forms from Alice’s perspective. But
what of Bob, jetting around like a fusion powered mosquito?

We resolve this conflict by arguing that we can find a natural rest frame
that both can use. Starting with an argument of Weinberg’s, we argue we
can associate an energy-momentum tensor with spacetime. This means we can
associate a local rest frame with spacetime. And this local rest frame can provide
the neutral and agreed defining frame for TQM.

This will complete the formal development of TQM.
Before turning to applications, we will then look at the relationship of TQM

to the relativistic dynamics program. We will argue that TQM may be under-
stood as a member of that program aggressively specialized to achieve falsifia-
bility.

3.2 Derivation of the Schrödinger equation

Normally the path integral expression is derived from the Schrödinger equation.
But because for us the path integral provides the defining formulation we need
to run the analysis in the “wrong” direction.

Our starting point is a derivation of the path integral from the Schrödinger
equation by Schulman [102]. We run his derivation in reverse and with one extra
dimension2.

We start with the discrete form of the path integral. We consider a single
step of length ε, taking ε→ 0 at the end. Because of this, only terms first order
in ε are needed.

Following Schulman, we define the coordinate difference:

ξ ≡ xj − xj+1 (3.1)

We rewrite the functions of xj as functions of ξ and xj+1. We expand the vector
potential:

Aν (xj) = Aν (xj+1) + (ξµ∂µ)Aν (xj+1) + . . . (3.2)

and the wave function:

ψτ (xj) = ψτ (xj+1) + (ξµ∂µ)ψτ (xj+1) +
1
2
ξµξν∂µ∂νψτ (xj+1) + . . . (3.3)

2This derivation is done for the free case in Fanchi [27].
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giving:

ψτ+ε (xj+1) =
√

ıam
2πε

√
− ıam

2πε

3 ∫
d4ξe−

ıamξ2

2ε −ıabm
2 ε

×eıaqξ
ν(Aν(xj+1)+

1
2 (ξµ∂µ)Aν(xj+1)+...)

×
(
ψτ (xj+1) + (ξµ∂µ)ψτ (xj+1) + 1

2ξ
µξν∂µ∂νψτ (xj+1) + . . .

) (3.4)

We now expand in powers of ξ ∼
√
ε. We do not need more than the second

power:

ψτ+ε (xj+1) =
√

ıam
2πε

√
− ıam

2πε

3 ∫
d4ξe−

ıamξ2

2ε

×
(
1 + ıaqξνAν (xj+1) + ıaq

2 ξ
νξµ∂µAν (xj+1)− a2q2

2 ξµAµ (xj+1) ξνAν (xj+1)− ıabmε2

)
×
(
ψτ (xj+1) + (ξµ∂µ)ψτ (xj+1) + 1

2ξ
µξν∂µ∂νψτ (xj+1) + . . .

)
(3.5)

The term zeroth order in ξ gives:√
ıam

2πε

√
− ıam

2πε

3 ∫
dξ4e−

ıamξ2

2ε = 1 (3.6)

This is not surprising; the normalization above was chosen to do this.
Terms linear in ξ give zero when integrated.
The terms second order in ξ (first in ε) are:(

−ıabmε2 + ıaq (ξνAν) (ξµ∂µ) + ıaq
2 ξ

νξµ (∂µAν)
−a2q2

2 (ξµAµ) (ξνAν) + 1
2ξ
µξν∂µ∂ν

)
ψτ (3.7)

Integrals over off-diagonal powers of order ξ2 give zero. Integrals over diagonal
ξ2 terms give: √

ıam
2πε

∫
dξ0e

− ıamξ2
0

2ε ξ20 = ε
ıam√

− ıam
2πε

∫
dξie

ıamξ2
i

2ε ξ2i = − ε
ıam

(3.8)

The expression for the wave function is therefore:

ψτ+ε = ψτ−
ıabmε

2
ψτ+

qε

m
(Aµ∂µ)ψτ+

q

2m
ε (∂µAµ)ψτ+

ıaq2ε

2m
A2ψτ−

ıε

2am
∂2ψτ

(3.9)
Taking the limit ε → 0 and multiplying by ı, we get the Schrödinger equation
for TQM:

ı
∂ψτ
∂τ

= ab
m

2
ψτ+

ıq

m
(Aµ∂µ)ψτ+

ıq

2m
(∂µAµ)ψτ−

aq2

2m
A2ψτ+

1
2ma

∂2ψτ (3.10)

or:

ı
∂ψτ
∂τ

(t, ~x) = − 1
2ma

(
(ı∂µ − aqAµ (t, ~x)) (ı∂µ − aqAµ (t, ~x))− a2bm2

)
ψτ (t, ~x)

(3.11)
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If we make the customary identifications ı ∂∂t → E, −ı~∇ → ~̂p or ı∂µ → pµ we
have:

ı
∂ψτ
∂τ

= − 1
2ma

(
(pµ − aqAµ) (pµ − aqAµ)− a2bm2

)
ψτ (3.12)

3.3 Long, slow approximation

We can now fix the scale and additive constants by looking at the behavior of
the Schrödinger equation over longer times.

In his development of quantum mechanics from a time-dependent perspective
[107], Tannor used a requirement of constructive interference in time to derive
the Bohr condition for the allowed atomic orbitals. We use a similar approach
here.

If we average over a sufficiently long period of time, the results will be
dominated by the components with:

ı
∂ψτ (x)
∂τ

= 0 (3.13)

The argument here is not that the typical variation from the long, slow
solution is small, but rather that over time interactions with the system in
question will tend to be dominated by interactions with the stabler, slower
moving components. Interactions with more rapidly varying components will
tend to average to zero.

Accepting this, then the right side looks like the Klein-Gordon equation. To
complete this identification, first look at the case with the vector potential A
zero: (

p̂2 − a2bm2
)
ψ = 0 → a2b = 1 (3.14)

Now when A is not zero we have:(
(p̂− aqA)2 −m2

)
ψ = 0 → a = 1 → b = 1 (3.15)

We will refer to this as the “long, slow approximation”.
In the free case, the long, slow approximation picks out the on-shell compo-

nents: (
p̂2 −m2

)
ψ = 0 (3.16)

And more generally the solutions of the Klein-Gordon equation with the minimal
substitution p→ p− qA: (

(p̂− qA)2 −m2
)
ψ = 0 (3.17)

The two constants are now fixed. The full Schrödinger equation is:

ı
∂ψτ
∂τ

(t, ~x) = − 1
2m

(
(ı∂µ − qAµ (t, ~x)) (ı∂µ − qAµ (t, ~x))−m2

)
ψτ (t, ~x) (3.18)

and in momentum space:

ı
∂ψτ
∂τ

= − 1
2m

(
(pµ − qAµ) (pµ − qAµ)−m2

)
ψτ (3.19)
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The free Schrödinger equation is:

2mı
∂ψτ
∂τ

(t, ~x) =
(
∂µ∂

µ +m2
)
ψτ (t, ~x) (3.20)

and in momentum space:

2mı
∂ψτ
∂τ

= −
(
pµp

µ −m2
)
ψτ (t, ~x) (3.21)

We establish in C this equation is unitary. Therefore if a wave function is
normalized at τ = 0:

1 =
∫
dtd~xψ∗0 (t, ~x)ψ0 (t, ~x) (3.22)

then at any later clock time τ > 0 we will have:

1 =
∫
dtd~xψ∗τ (t, ~x)ψτ (t, ~x) (3.23)

We next estimate the time scales over which we expect the long, slow ap-
proximation to be valid.

3.4 How long and how slow?

We have argued that we can fix the scaling and additive constants by looking
at the behavior of the Schrödinger equation over long times. What do we mean
by long times?

To see the relevant scale, we estimate the clock frequency f :

f ∼ −E
2 − ~p2 −m2

2m
(3.24)

In the non-relativistic case E is of order mass plus kinetic energy:

E ∼ m+
~p2

2m
(3.25)

So we have:

E2 − ~p2 −m2 ∼
(
m+

~p2

2m

)2

− ~p2 −m2 =
(
~p2

2m

)2

(3.26)

This is just the kinetic energy, squared. In an atom the kinetic energy is of
order the binding energy:

~p2

2m
∼ eV (3.27)

So the numerator is of order eV squared. But the denominator is of order
MeV . So we can estimate the clock frequency f as:

f ∼ eV 2

MeV
∼ 10−6eV (3.28)
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Energies of millionths of an electron volt 10−6eV correspond to times of
order millions of attoseconds 106as or picoseconds, a million times longer than
the natural time scale of the effects we are looking at. So the long, slow approx-
imation is reasonable.

The physical picture that emerges is of a particle that is extended in time on
the same basis as space, with its wave function extend in all four dimensions,
and – if we think in terms of path integrals – the associated paths wandering
around in all four dimensions, not just the traditional three.

It may be amusing to note that from this perspective there is no such thing as
an onshell particle; in momentum space the onshell part of the wave function is
always a set of measure zero. It is only over scales of picoseconds and greater that
an onshell description of the particle may give an acceptable approximation.

3.5 Observer independent choice of frame

There remains one piece of the puzzle; we need to establish that the use of the
clock time τ does not itself violate covariance.

If we did the above derivation for Bob rather than Alice, we would see Alice’s
clock time replaced by Bob’s clock time τ → γτ (γ ≡ 1√

1−v2 ) where v is his
velocity relative to her.

We therefore have one free parameter left to fix before we can declare our
analysis free of free parameters.

If Bob is not going that quickly (relative to Alice) the errors created by
ambiguities with respect to τ will introduce only small corrections; of only
second order and therefore not relevant for falsifiability.

Even if we were prepared to accept that, establishing frame independence is
interesting as a point of principle.

This may be done in a natural way by making use of an observation from
Weinberg [114]. Per Weinberg, we may treat the Einstein field equation for
general relativity as representing conservation of energy-momentum when ex-
changes of energy momentum with spacetime are included.

Consider the Einstein field equations:

Gµν ≡ Rµν −
1
2
gµνR = −8πGTµν (3.29)

Rewrite as:
(Gµν + 8πGTµν);ν = 0 (3.30)

We may use this to associate an energy momentum tensor (tµν in Weinberg’s
notation) with local space time. Define:

gµν = ηµν + hµν (3.31)

where hµν vanishes at infinity but is not assumed small. The part of the Ricci
tensor linear in h is:

R(1)
µν ≡

1
2

(
∂2hλλ
∂xµ∂xν

−
∂2hλµ
∂xλ∂xν

− ∂2hλν
∂xλ∂xµ

+
∂2hµν
∂xλ∂xλ

)
(3.32)
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The exact Einstein equations may be written as:

R(1)
µν −

1
2
ηµνR

(1)λ
λ = −8πG (Tµν + tµν) (3.33)

where tµν is defined by:

tµν ≡
1

8πG

(
Rµν −

1
2
gµνR

λ
λ −R(1)

µν +
1
2
ηµνR

(1)λ
λ

)
(3.34)

Weinberg then argues we may interpret tµν as the energy-momentum of the
gravitational field itself.

Accepting this, we change to a coordinate frame in which tµν is diagonalized.
We will refer to this as the rest frame of the vacuum or the V frame. We can
treat this V frame as the defining frame for the four dimensional Schrödinger
equation. As the V frame is invariant (up to rotations in three-space) we now
have an invariant definition of the four dimensional Schrödinger equation.

This is obviously going to be a free-falling frame. So Alice and Bob – if they
are working in a terrestrial laboratory – will have to adjust their calculations
to include a correction for the upwards force the laboratory floor exerts against
them. If their colleague Vera is working in an orbiting laboratory, she will be
able to calculate without correction.

Here after, unless stated to contrary, we will assume we are working in the
“rest frame of the vacuum”.

3.6 Relationship between TQM and the Relativistic Dy-
namics program

“In other words, we are trying to prove ourselves wrong as quickly
as possible, because only in that way can we find progress.” –
Richard P. Feynman [37]

We have now fully defined the path integral expression and the Schrödinger
equation.

It is appropriate therefore to pause to look at relationship of TQM to the
relativistic dynamics program. (A helpful overview of the relativistic dynamics
program is provided in Fanchi [26]).

3.6.1 TQM as part of the Relativistic Dynamics program

We start with Feynman [31], who uses the Lagrangian:

LFeynman (xµ, ẋµ) = −ẋµẋµ − qẋµAµ (x) (3.35)

giving:

ı
∂

∂s
ψs =

(pµ − qAµ) (pµ − qAµ)
2

ψs (3.36)
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However with this approach, as Feynman notes, each particle would need its
own evolution parameter s. This would make extension to the multiple particle
case problematic.

There are many variations on this in the literature. Fanchi [27] derives:

ı
∂

∂s
ψs =

(pµ − qAµ) (pµ − qAµ)
2m

ψs (3.37)

This differs from Feynman’s by a factor of 1
m . Fanchi’s evolution parameter

s is for all practical purposes the negative of our clock time τ .
Land and Horwitz [72] give:(

ı
∂

∂s
+ qa5

)
ψs =

(pµ − qAµ) (pµ − qAµ)
2m

ψs (3.38)

This is Fanchi’s with the addition of the a5, a gauge term.
If we take s→ −τ and make the choice of gauge (see D):

a5 ⇒
m

2q
(3.39)

we get: (
ı
∂

∂τ

)
ψs = − (pµ − qAµ) (pµ − qAµ)−m2

2m
ψs (3.40)

which is the same as our Schrödinger equation (equation 3.18).
At this point we may argue that as the right hand-side is the Klein-Gordon

equation, and the Klein-Gordon equation is strongly confirmed by experimental
evidence we have:

0 ≈ (pµ − qAµ) (pµ − qAµ)−m2

2m
ψs (3.41)

So the combination of the mass gauge (a5 = m
2q ) and the comparison with

the Klein-Gordon equation give us the long slow approximation.
We have therefore placed our Schrödinger equation within the context of

the relativistic program. This will let us use results from that program in the
appropriate limit.

3.6.2 TQM and falsifiability

TQM may be thought of as a specialization of the relativistic dynamics program
aimed at making the hypothesis “time should be treated on the same basis as
space in quantum mechanics” falsifiable. This means in turn that we have to
be able to rule out the class of such theories, not just one in particular.

To do this we need to extend quantum mechanics to include time in a way
that depends only on covariance. We can admit no free or adjustable parameters;
any such risk falsifiability.

We may understand each step of the program here from this point of view.
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1. We used clock time as the “evolution parameter”. This is defined op-
erationally – by the laboratory clock – and therefore introduces no free
parameters.

2. We used path integrals as the defining representation; with these the only
change we need to make is to have the paths extend in four rather than
three dimensions.

3. We could not use plane waves or delta functions as the initial wave func-
tions: as they are not physical, they introduce the risk of inducing math-
ematical artifacts and again threatening falsifiability.

4. We needed to treat general wave functions, not just a specialized subset.
Otherwise the results might be conditional on the subset chosen.

5. We needed to ensure that our path integrals are convergent without the
use of tricks. Otherwise the tricks can bring the results into question.
The use of Morlet wavelet decomposition solved this and the previous two
problems.

6. The resulting Schrödinger equation depends on the clock time. To elim-
inate such dependence (to lowest order) we showed that the time scales
associated with the clock time are of order picoseconds, while the scales
associated with dispersion in time are of order attoseconds – a million
times smaller. So long as we work at the attosecond scale we should be
able to ignore effects associated with clock time.

7. The clock time in turn depends on the choice of the laboratory frame.
To further control for effects of the specific choice of laboratory frame,
we showed we can define an invariant frame (the “rest frame of the vac-
uum”). By defining all calculations with reference to this invariant frame
we eliminate the dependence of the clock time on the choice of a specific
laboratory frame.

While we have fully defined the path integral expression and the Schrödinger
equation, there are still some further questions that need to be addressed if we
are to achieve falsifiability:

1. How do we estimate the initial wave functions in time in a robust and
frame independent way (subsection 4.1)?

2. How do we understand the evolution of the wave function with respect to
clock time: with the long, slow approximation we appear to be saying the
wave function is frozen in time, that ı ∂∂τ ψ ≈ 0, which is clearly far from
the case (subsection 4.2)?

3. How do we define the rules for detection in a way which is manifestly
covariant (subsection 4.3)?
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4. How do we produce at least one experiment with which we can unambigu-
ously show that the wave function should not be extended in time (section
5)?

5. Realistic experiments will need to run at ultra-short times and therefore
high energies. At these energies, particles may spring into existence from
the vacuum. How do we extend this analysis to the multiple particle case
in a way which is consistent with the work done in the single particle case
(section 6)?

At attosecond times, we expect that the effects of dispersion in time will domi-
nate. Over picosecond and longer times we expect that the effects of the clock
time will need to be included.

Therefore, at attosecond times, we expect TQM will function as a kind of
lowest common denominator for the relativistic dynamics program. At picosec-
ond times, we may need to include contributions from the evolution parameter
and therefore be able to discriminate among various branches of the relativistic
dynamics program.

4 Free solutions

We now have the Schrödinger equation. What do its free solutions look like?
We examine in turn the birth, life, and death of a free particle. The cal-

culations are straightforward. But each stage will present problems specific to
TQM.

For convenience, we assemble the solutions of the free Schrödinger’s equation
in E.

4.1 Initial wave function

What do our wave functions look like at start?
We have a chicken and egg problem here. Any initial wave function had

itself to come from somewhere. How can we estimate the initial wave functions
without first knowing them?

We look specifically at the Klein-Gordon equation for a static electric po-
tential with no magnetic field:

A0 = Φ (~x) , ~A = 0 (4.1)

with potential:
V ≡ qΦ (4.2)

This includes attractive potentials, scattering potentials, and the free case
as the special case when Φ = 0.

In SQM the Klein-Gordon equation is:(
(ı∂τ − V (~x))2 −∇2 −m2

)
ψ̄τ (~x) = 0 (4.3)
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In TQM the equivalent is the four dimensional Schrödinger equation:

ı
∂

∂τ
ψτ (t, ~x) = − 1

2m

(
(ı∂t − V (~x))2 −∇2 −m2

)
ψτ (t, ~x) (4.4)

The long, slow approximation picks out the solutions with:(
(ı∂t − V (~x))2 −∇2 −m2

)
ψτ (t, ~x) = 0 (4.5)

We will assume we are already in possession of solutions to the SQM version
of the problem: (

(E − V (~x))2 − ~p2 −m2
)
ψ̄E (~x) = 0 (4.6)

This is necessarily in a specific frame, since SQM solutions are always (from
our perspective) taken with reference to a specific frame.

We leverage the SQM solutions in two different ways3 to get the TQM solu-
tion:

1. Separation of variables. Each SQM solution induces a TQM solution,
which is the SQM solution with a plane wave bolted on. This is technically
correct, but unphysical.

2. Maximum entropy. We can use the long, slow approximation to estimate
the mean and uncertainty of the coordinate energy. With these we can use
the method of Lagrange multipliers to get the maximum entropy solution.
Maximum entropy solutions tend to be robust: even if we are wrong about
the details, the order of magnitude should be correct. This will provide
our preferred starting point.

As a quick check on the sanity of all this we will use the virial theorem to esti-
mate the TQM version of the atomic wave functions. The width in time/energy
of these matches the initial order of magnitude estimate we gave in the intro-
duction.

We will also show that while we have chosen a specific frame in which to
estimate the dispersion in time/energy we can get the estimate in an invariant
way.

4.1.1 Solution by separation of variables

We solve the TQM Klein-Gordon equation using separation of variables, looking
for solutions of the form:

ϕn (t, ~x) = φ̃n (t) ϕ̄n (~x) (4.7)

where ϕ̄n (~x) is a solution of the SQM Klein-Gordon equation:((
Ēn − V (~x)

)2 − ~p2 −m2
)
ϕ̄n (~x) = 0 (4.8)

3This problem is also solved in Fanchi [27], using different methods.
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Then the coordinate time part is:

φ̃n (t) =
1√
2π
e−ıĒnt (4.9)

Because the potential is constant in time each use of the operator E turns into
a constant En via:

E → ı
∂

∂t
→ Ēn (4.10)

We get immediately:((
Ēn − V (~x)

)2 − ~p2 −m2
)
ϕn (t, ~x) = 0 (4.11)

So every solution of the Klein-Gordon equation in SQM generates a corre-
sponding solution in TQM.

We could accomplish the same thing, formally, by taking τ → t. Since we
expect in general that 〈t〉 ≈ τ (discussed further in the next section) this will
often a give reasonable first approximation.

However this is not entirely satisfactory. We have a solution which is “fuzzy”
in space, but “crisp” in time. A more realistic, if more complex solution, would
include off-shell components. Even if our wave function started out as a simple
plane wave in time, internal decoherence would rapidly turn it into something
a bit more cloud-like. While mathematically acceptable, our solution is not
physically plausible.

4.1.2 Solution by maximum entropy

The long, slow approximation picks out a single solution. But in practice we
expect there would be a great number of solutions, with the one given by the
long slow approximation merely the most typical.

Such a sum will have an associated probability density function. We can
get a reasonable first estimate of this by defining appropriate constraints and
then using the method of Lagrange multipliers to pick out the distribution with
maximum entropy.

From the probability density, we will infer the wave function.

Estimate of the probability density We start with the free case, as rep-
resenting the simplest case of a constant potential. We treat the bound case
below.

We assume we are given the SQM wave function in three dimensions. We
use this to compute the expectation of the energy, and the expectation of the
energy squared. These give us our constraints:

〈1〉 = 1

Ē ≡ 〈E〉 =
√
m2 + 〈~p〉2〈

E2
〉

=
〈
m2 + ~p2

〉
= m2 +

〈
~p2
〉 (4.12)
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The uncertainty in energy is defined as:

∆E ≡
√
〈E2〉 − 〈E〉2 (4.13)

The expectations are defined as integrals over the probability density:

〈f〉 ≡
∫
d~pρ̄ (~p) f (~p) (4.14)

The constraints imply ∆E = ∆p.
We will work with box normalized energy eigenfunctions:

φn (t) ≡ 1√
2T

e−ıE0nt (4.15)

E0 ≡
π

T
(4.16)

Here n is an integer running from negative infinity to positive and the eigenfunc-
tions are confined to a box extending T seconds into the future and T seconds
into the past, where T is much larger than any time of interest to us. (We will
use a similar approach in developing the four dimensional Fock space below,
subsection 6.3.2).

A general wave function can be written as:

ψ (t) =
∞∑

n=−∞
cnφn (t) (4.17)

The coefficients c only appear as the square:

ρn ≡ c∗ncn (4.18)

Expressed in this language we have the constraints:

C0 ≡
∞∑

n=−∞
ρn − 1 = 0

C1 ≡ E0

∞∑
n=−∞

nρn − 〈E〉 = 0

C2 ≡ E2
0

∞∑
n=−∞

n2ρn −
〈
E2
〉

= 0

(4.19)

We would like to find the solution that maximizes the entropy:

S ≡
∞∑

n=−∞
−ρn ln (ρn) (4.20)

We form the Lagrangian from the sum of the entropy and the constraints, with
Lagrange multipliers λ0, λ1, and λ2:

L ≡ S + λ0C0 + λ1C1 + λ2C2 (4.21)

35



To locate the configuration of maximum entropy, we take the derivative with
respect to the ρn:

∂L

∂ρn
= 0 (4.22)

getting:
− ln ρn − 1 + λ0 + E0nλ1 + E2

0n
2λ2 = 0 (4.23)

Therefore the distribution of the ρn is given by an exponential with zeroth, first,
and second powers of the energy:

ρ (E) ∼ e−a−bE−cE
2

(4.24)

The constraints force the constants:

ρ (E) =
1√

2π∆E2
e
− (E−Ē)2

2(∆E)2 (4.25)

Estimate of the wave function We therefore have the probability density
in energy; now we wish to estimate the corresponding wave function in energy
(or equivalently time).

The simplest – and therefore best – way to do this is to write the total wave
function as the direct product of a wave function in energy times the postulated
wave function in momentum:

ϕ̂ (E, p) ∼ ˆ̃ϕ (E) ˆ̄ϕ (p) (4.26)

We then use the Gaussian test function that matches the derived density
function for the energy factor:

ˆ̃ϕ0 (E) = 4

√
1

πσ2
E

e
ı(E−E0)t0− (E−E0)2

2σ2
E (4.27)

with values:
σ2
E = σ2

p (4.28)
and:

E0 =
√
m2 + p̄2 (4.29)

Taking the Fourier transform of the energy part we have:

ϕ̃0 (t) = 4

√
1
πσ2

t

e
−ıE0(t−t0)− t2

2σ2
t (4.30)

σ2
t =

1
σ2
E

(4.31)

We set t0 = 0 as the overall phase is already supplied by the space/momentum
part.

The full wave functions are the products of the coordinate time and space
(or energy and momentum) parts:

ϕ0 (t, x) = ϕ̃0 (t) ϕ̄0 (x) (4.32)

ϕ̂0 (E, p) = ˆ̃ϕ0 (E) ˆ̄ϕ0 (p) (4.33)
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4.1.3 Bound state wave functions

We extend this approach to estimate the dispersion of a bound wave function
in time.

In the case of a Coulomb potential we can estimate ∆p from the virial
theorem: 〈

~p2

2m

〉
= −1

2
〈V 〉 (4.34)

which implies: 〈
~p2

2m

〉
+ 〈V 〉 = Ēn →

〈
~p2

2m

〉
= −Ēn (4.35)

Since the average momentum is zero, we have the estimate of the uncertainty
in energy as:

∆En =
√
−2mĒn (4.36)

Substituting the mass of the electron and the Rydberg constant, we have for
the hydrogen ground state:

∆E1 =
√

2 · 13.6eV · (0.511 · 106) eV = 3728 eV (4.37)

And the corresponding dispersion in coordinate time is:

∆t =
h̄

∆En
= .1766as (4.38)

This matches the order of magnitude estimate we started with (subsection
1.2). The numerical closeness is coincidental, but does increase confidence the
order of magnitude is correct.

We have therefore as the initial estimate of the TQM wave function for a
hydrogen atom:

ψ̂n (E, ~p) = ϕ̂n (E) ˆ̄ψn (~p)

ˆ̃ϕn (E) = 4

√
1

2πσ̂2
n
e
ı(E−Ēn)t0− (E−Ēn)2

2σ̂2
n

σ̂2
n = −4mĒn

(4.39)

4.1.4 Frame independence of the estimate

We have given a reasonable estimate of the initial wave function in time/energy.
However, we have not yet established that the estimate is independent of the
initial choice of frame.

For both the bound and free cases, we choose our initial frame as the rest
frame. We make our estimate, via maximum entropy in this frame, then to get
the wave function in a arbitrary frame Lorentz transform to that frame:

ψ′ (x′) = ψ (Λx) (4.40)

Since the rest frame is an invariant, the resulting initial wave functions are
well-defined.
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4.2 Evolution of the free wave function

Now that we know what our starting wave functions look like, how do they
evolve over time?

For a first examination we work with the non-relativistic case; we will extend
to the relativistic case below (section 6). We will first look at the SQM case,
then the TQM case, then compare the two.

4.2.1 Evolution in SQM

We start with the familiar problem of the evolution of the non-relativistic wave
function with respect to clock time. We work with two dimensions – τ, x – since
the extension to y, z is straightforward.

The non-relativistic Schrödinger equation is:

ı
∂

∂τ
ψ̄ =

p2

2m
ψ̄ = − ∂2

x

2m
ψ̄ (4.41)

At clock time zero we start with a Gaussian test function in momentum with
average position x0, average momentum p0, and dispersion in momentum σp.
To reduce clutter we use p for px:

ˆ̄ϕ0 (p) = 4

√
1
πσ2

p

e
−ıpx0− (p−p0)2

2σ2
p (4.42)

In momentum space the problem is trivial. The solution is:

ˆ̄ϕτ (p) = 4

√
1
πσ2

p

e
−ıpx0− (p−p0)2

2σ2
p

−ı p2

2m τ
(4.43)

In coordinate space we get:

ϕ̄τ (x) = 4

√
1
πσ2

x

√
1

f
(x)
τ

e
ıp0x− 1

2σ2
xf

(x)
τ

(x−x0− p0
m τ)2−ı p2

0
2m τ

(4.44)

with:
σx =

1
σp

(4.45)

f (x)
τ = 1 + ı

τ

mσ2
x

(4.46)

4.2.2 Evolution in TQM

In two dimensions the Schrödinger equation for TQM is:

ı
∂ψτ
∂τ

(t, ~x) = −E
2 − p2 −m2

2m
ψτ (t, ~x) =

(
∂2
t

2m
− ∂2

x

2m
+
m

2

)
ψτ (t, ~x) (4.47)
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We start in energy momentum space. The momentum part is as above. We
start with a Gaussian test function in energy, with average time at start t0,
average energy E0, and dispersion in energy σE :

ˆ̃ϕ0 (E) ≡ 4

√
1

πσ2
E

e
ıEt0− (E−E0)2

2σ2
E (4.48)

Usually we will take t0 = τ0 = 0.
As a function of clock time we get:

ψ̂τ (E, p) = ˆ̃ϕ0 (E) ˆ̄ϕ0 (p) exp
(
−ıE

2 − p2 −m2

2m
τ

)
(4.49)

We divide up the pieces of the clock time part, assigning the E2

2m to the
energy part, the p2

2m to the momentum part, and keeping the third part outside:

ψ̂τ (E, p) = ˆ̃ϕτ (E) ˆ̄ϕτ (p) exp
(
ı
m

2
τ
)

(4.50)

Now the energy part works in parallel to the momentum part:

ˆ̃ϕτ (E) ≡ 4

√
1

πσ2
E

e
ıEt0− (E−E0)2

2σ2
E

−ıE2
0

2m τ
(4.51)

And in coordinate space:

ϕ̃τ (t) = 4

√
1
πσ2

t

√
1

f
(t)
τ

e
−ıE0t+ı

E2
0

2m τ− 1

2σ2
t f

(t)
τ

(t−t0−E0
m τ)2

(4.52)

with the usual ancillary definitions:

σE =
1
σt

(4.53)

f (t)
τ ≡ 1− ı

τ

mσ2
t

(4.54)

and with the expectation for coordinate time:

t̄τ = t0 +
E0

m
τ (4.55)

implying a velocity for coordinate time with respect to laboratory time:

γ =
E0

m
(4.56)

In the non-relativistic case, γ ≈ 1. So the expectation of the coordinate time
advances at the traditional one-second-per-second rate relative to the clock time.
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4.2.3 Comparison of TQM to SQM

The TQM and SQM approaches develop in close parallel. In both, the wave
functions are centered on the classical trajectory as given by the solution of the
Euler-Lagrange equations.

There is however one peculiarity.
We are relying on the long, slow approximation. Especially over short times,

this means that the total wave function appears to be relatively static with
respect to evolution in clock time:

ı
∂

∂τ
ψ ≈ 0 (4.57)

In momentum space:

fp ≡ −
E2 − p2 −m2

2m
≈ 0 (4.58)

However, real wave functions are not static with respect to clock time.
The resolution is that most of the clock time dependence is carried by the

coordinate time:
d

dτ
ψ =

∂

∂τ
ψ +

dt

dτ

∂

∂t
ψ ≈ dt

dτ

∂

∂t
ψ (4.59)

And in the non-relativistic case we have:

dt

dτ
=
E

m
≈ 1 (4.60)

So we get as a rough approximation:

d

dτ
ψ ≈ ∂

∂t
ψ (4.61)

We see that the expectation of the coordinate time is about equal to the
clock time. While Alice’s dog is always getting ahead of and behind her, on
average his position is about equal to hers:

〈t〉 ≈ τ (4.62)

The Schrödinger equation gives the partial derivative with respect to clock
time; the total derivative behaves as expected.

4.3 Time of arrival measurements

So we know what our wave function looks like at start and how it evolves with
time. To complete the analysis of the free case we look at how it is detected.

We look specifically at the measurement of time-of-arrival. We assume we
have a particle going left to right, starting at x = 0. We place a detector at
position x = L. It records when it detects the particle. The metric we are
primarily interested in is the dispersion in time-of-arrival at the detector.
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Figure 4.1: Complex paths near the detector

In SQM, if a detector located at position X registers a hit by a particle
we take the particle’s position in space as also x = X. Therefore in TQM, if
detector active at laboratory time T registers a hit by a particle we must take
the particle’s position in time as t = T . This is required by our principle of
maximum symmetry between time and space.

By the same token, in SQM if an emitter located at position X emits a
particle, we take the start position of the path as x = X. Therefore in TQM, if
an emitter active at laboratory time T emits a particle, we must take the start
position in coordinate time as t = T .

In a practical treatment we would replace the phrases “at X” or “at T” with
“within the range X ± ∆X

2 ” and “within the range T ± ∆T
2 ”.

If we know both source and detector positions in space and time then all
corresponding paths are clamped at both ends. In between source and detector
the paths can examine all sorts of interesting times and spaces but each path
is clamped at the endpoints. Alice and her dog leave from the same starting
point in space time and arrive at the same ending point in space time, but while
classical Alice takes the shortest path between the start and end points, the
quantum dog explores all paths.

Meaning of “all paths” Paths in TQM are much more complex than those
in SQM. If a detector is a camera shutter, open for a fraction of a second,
then any paths that arrive early or late will merely be “eaten” by the closed
shutter. But what if our apparatus can somehow be toggled from transparent
to absorptive and back, as via “electromagnetically induced transparency” [39]?
Then the paths can arrive early but then circle back, or arrive late but circle
forward, or even perform a drunkard’s walk around the detector till they choose
to fall into it.
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Since we are primarily interested in comparisons of TQM to SQM, rather
than in fully exploring the elaborations of TQM, we will focus on the camera
shutter model. Paths that arrive before the shutter is open or after the shutter
is closed again will be silently absorbed by the camera itself. We defer to a later
investigation examination of more complex paths.

We employ the rest frame of the camera.

4.3.1 Metrics

With that dealt with, to compute the dispersion in time, we log how many hits
we get in each time interval (“clicks per tick”):

ρ (τ) (4.63)

then calculate the average:

〈τ〉 ≡
∞∫

−∞

dτρ (τ) (4.64)

and the uncertainty:

〈∆τ〉2 ≡
∞∫

−∞

dττ2ρ (τ)− 〈τ〉2 (4.65)

4.3.2 Time of arrival in SQM

We start with a particle with initial position x = 0 and with average momen-
tum (in the x direction) of p0. We will assume that the initial dispersion in
momentum is small. We have the wave function from above. The probability
density is then:

ρ̄τ (x) ≡ |ϕ̄τ (x)|2 =

√√√√ 1

πσ2
x

∣∣∣f (x)
τ

∣∣∣2 e
− (x− p0

m
τ)2

σ2
x|f(x)

τ |2 (4.66)

We assume there is a detector at position x = L. If the particle is released
at time τ = 0 the average time of arrival is:

τ̄D ≡
mL

p0
(4.67)

We can write the difference from the average time as δτ ≡ τ−τ̄ We are interested
in the uncertainty in time of arrival at the detector or the expectation of δτ2.

If we were looking at measurements of the x position we would know how
to proceed. We would compute:

∆x =

√∫
dx(x− x̄)2ρτ (x) (4.68)
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Figure 4.2: Time of arrival

We would like something not much more complex for the uncertainty in time.
And which makes sense for both SQM and TQM.

We will take an ad hoc approach here but then check it against the results
of a more detailed analysis by Muga and Leavens[82].

Normally we think of a wave function as something that evolves in time; it is
first a function of τ , then of x. But here we are not interested in the probability
to be at x at a specific time τ ; we are interested in the probability to be at a
specific clock time τ for a fixed x = L. So we will rewrite the probability density
as a function of τ .

We will assume that we are dealing with a reasonably well-focused particle
so we may use a paraxial approximation. We can write x = vτ or x = L+ δx.
We use this to rewrite the density function as a function of δτ . We take:

L+ δx = v (τ̄D + δτ) → δx = vδτ (4.69)

We keep only terms up through second order in δτ .
We rewrite the numerator in the density function in terms of δτ :

ρ̄τ (L) ≈
√√√√ 1

πσ2
x

∣∣∣f (x)
τ

∣∣∣2 e
− (vδτ)2

σ2
x|f(x)

τ |2 (4.70)

Since the numerator is already only of second order in δτ we need only keep the
zeroth order in δτ in the denominator:

σ2
x

∣∣∣f (x)
τ

∣∣∣2 = σ2
x +

τ2

m2σ2
x

= σ2
x +

(τ̄ + δτ)2

m2σ2
x

≈ (τ̄ + δτ)2

m2σ2
x

≈ τ̄2

m2σ2
x

(4.71)
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giving:

ρ̄δτ ≈
√
v2m2σ2

x

πτ̄2
e−

v2m2σ2
x

τ̄2 (δτ)2 (4.72)

We define an effective dispersion in time:

σ̄τ ≡
1

mvσx
τ̄ (4.73)

And the probability of detection as:

ρ̄δτ =

√
1
πσ̄2

τ

e
− (δτ)2

σ̄2
τ (4.74)

This is normalized to one, centered on τ = τ̄ , and with uncertainty:

∆τ =
1√
2
σ̄τ (4.75)

Particularly important is the inverse dependence on the velocity. Intuitively
if we have a slow moving (non-relativistic) particle, it will take a long time to
pass through by the x position of the detector, causing the associated uncer-
tainty in time to be relatively large.

Comparison to a time-of-arrival operator As a cross-check, we compare
our treatment to the time-of-arrival operator analysis in Muga and Leavens
(who are following Kijowski [66]). They give a probability density in time of:

ρ (τ) =

∣∣∣∣∣∣
∞∫
0

dp

√
p

m
e−ı

p2τ
2m ˆ̄ϕ (p) exp (ıpL)

∣∣∣∣∣∣
2

+

∣∣∣∣∣∣
0∫

−∞

dp

√
−p
m
e−ı

p2τ
2m ˆ̄ϕ (p) exp (−ıpL)

∣∣∣∣∣∣
2

(4.76)
where ˆ̄ϕ is an arbitrary momentum space wave function normalized to one.

Assume:
p0 � σp (4.77)

so:
p ≈ p0 (4.78)

If our wave functions are closely centered on p, the term with negative mo-
mentum can be dropped or even flipped in sign without effect on the value of
the integral. Further, by comparison to the exponential part, the term under
the square root is roughly constant:√

p

m
≈
√
p0

m
(4.79)

So we may replace Muga and Leaven’s expression by the simpler:

ρ (τ) ≈ p0

m

∣∣∣∣∣∣
∞∫

−∞

dpe−ı
p2τ
2m ˆ̄ϕ (p) exp (ıpL)

∣∣∣∣∣∣
2

(4.80)
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As the contents of the integral are the Fourier transform of the (clock) time
dependent momentum space wave function, it is the clock time dependent space
wave function at x = L:

ρ (τ) ≈ p0

m
|ϕ̄τ (L)|2 (4.81)

We are now in x space. To get to τ space, we take:∫
p0

m
dx =

∫
vdx =

∫
dτ (4.82)

and the probability density from Muga and Leavens is now identical to ours.

4.3.3 Time of arrival in TQM

It is striking that there is considerable uncertainty in time even when time is
treated classically. Our hypothesized uncertainty in time will be added to this
pre-existing uncertainty.

Using the time wave function from equation 4.52 we have for the probability
density in time:

ρ̃τ (t) =

√√√√ 1

πσ2
t

∣∣∣f (t)
τ

∣∣∣2 e
− 1

σ2
t |f(t)

τ |2
(t−τ)2

(4.83)

We multiply by the space part from above to get the full probability density:

ρD (t, L) = ρ̃D (t) ρ̄D (L) (4.84)

If t were replaced by space dimension y, we would have no doubt as to how to
proceed. To get the overall uncertainty in y we would integrate over clock time:

(∆y)2 =
∫
dy (y − ȳ)2

∫
dτρτ (y) ρ̄τ (L) (4.85)

Therefore we write (taking y → t):

(∆t)2 =
∫
dt (t− τ̄)2

∫
dτ ρ̃τ (t) ρ̄τ (L) (4.86)

This is a convolution of clock time with coordinate time. To solve we first invoke
the same approximations as above:

σ2
t

∣∣∣f (t)
τ

∣∣∣2 = σ2
t + τ2

m2σ2
t

= σ2
t + (τ̄+δτ)2

m2σ2
t
≈ (τ̄+δτ)2

m2σ2
t
≈ τ̄2

m2σ2
t

σ̃τ ≡ τ̄
mσt

ρ̃τ (t) ≈
√

1
πσ̃2

τ
e
− 1

σ̃2
τ

(t−τ)2
(4.87)

So we have for the full probability distribution in t:

ρτ̄ (t) ≡
∫
dτ
√

1
πσ̃2

τ
e
− 1

σ̃2
τ

(t−τ)2√ 1
πσ̄2

τ
e
− 1

σ̄2
τ

(τ−τ̄)2

(∆t)2 =
∫
dt (t− τ̄)2 ρτ̄ (t)

(4.88)
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The convolution over τ is trivial giving:

ρτ̄ (t) =

√
1
πσ2

τ

e
− (t−τ̄)2

σ2
τ (4.89)

with the total dispersion in clock time being the sum of the dispersions in
coordinate time and in space:

σ2
τ ≡ σ̃2

τ + σ̄2
τ (4.90)

This is intuitively reasonable.
The uncertainty is:

∆τ =
1√
2

√
σ̃2
τ + σ̄2

τ (4.91)

We collect the definitions for the two dispersions:

σ̄2
τ = τ̄2

m2v2σ2
x

σ̃t
2 ≈ τ̄2

m2σ2
t

(4.92)

From the long, slow approximation, we would expect particle wave functions
to have initial dispersions in energy/time comparable to their dispersions in mo-
mentum/space. σt ∼ σx. But the conventional contribution has an additional
1
v in it. Since in the non-relativistic case, v � 1 the total uncertainty will be
dominated by the space part.

This helps to explain why dispersion in time has not been seen by accident.
It also motivates an exploration of the relativistic case, where the effects of
dispersion in time should be at least comparable to the effects of dispersion in
space (section 6).

5 Single and double slit experiments

There is already a significant literature on the “in time” versions of the single
and double slit experiments. The investigation of this problem started over sixty
years ago with Moshinsky [80, 81] and continues, with a recent review by Ger-
hard and Paulus [40]. Particularly interesting for our purposes are treatments of
scattering of wave functions, as Umul [110] and Marchewka and Schuss [75, 76].

Neither single nor double slit has, to the best of our knowledge, been solved
exactly. Approximations are necessary. Further the SQM and TQM branches
have to be approximated in a way that lets us compare the two branches directly.
We will treat the single slit first, then the double.

5.1 Single slit in time

The single slit in time experiment provides the decisive test of temporal quantum
mechanics.
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In SQM, the narrower the slit, the less the dispersion in subsequent time-
of-arrival measurements. In TQM, the narrower the slit, the greater the subse-
quent dispersion in subsequent time-of-arrival measurements. In principle, the
difference may be made arbitrarily great.

This distinction follows directly from the fundamental principles of quantum
mechanics. Picture a quantum wave function going through a gate in space.
If the gate is wide, diffraction by the edges is minimal and the subsequent
broadening of the wave function minimal. The gate will clip the beam around
the edges and that will be about it. But if the gate is narrow, then the wave
function will spread in a nearly circular pattern and the subsequent broadening
will be arbitrarily great.

In terms of the uncertainty principle, the gate represents a measurement of
the position. The narrower the gate, the less the uncertainty at the gate. If
∆y is small, then ∆py must be correspondingly large and the resulting spread
greater at the detector. As ∆y → 0 ⇒ ∆py → ∞. But a large ∆py implies –
with a bit of time – a large spread at the detector.

We translate this from space to time. We will start with a beam moving from
left to right in the x direction, going through an extremely fast camera shutter,
and arriving at a detector. In both SQM and TQM, the faster the shutter the
smaller ∆t. But in SQM the beam is clipped and the dispersion at the detector
correspondingly reduced. While in TQM the smaller the ∆t the correspondingly
greater the ∆E. The greater the ∆E, the greater the dispersion in velocities
and the greater the dispersion in time-of-arrival at the detector.

The distribution of detections in clock time will give us the dispersion in
time-of-arrival, which is the key measurement.

We will ignore paths that loop back and forth through the gate. Most
elementary treatments make this assumption of a single passage (for an analysis
of the effects of multiple passages of a gate see Yabuki, Raedt, and Sawant
[117, 22, 97]).

We will also, following Feynman and Hibbs [35], take the gate as having a
Gaussian shape, rather then turning on and off instantly. This is more realistic
and avoids some distracting mathematical complexities that result from using
hard-edged gates.

Note also, in space we can make the gate entirely perpendicular to the beam.
Beam traveling in x, gate in y. The beam can start with zero momentum in
the y direction, letting the x momentum act as a carrier. But there is no such
thing as a particle that does not have at least some momentum in time, i.e.
energy. Therefore it is difficult to achieve a complete separation between the
measurement of px and E. Here we will use increased dispersion in the time-of-
arrival measurements as the test of TQM. (Below we will discuss briefly a way to
separate the measurements of uncertainty in space and in time: subsubsection
6.8.4.)

As usual we look first at SQM, then TQM.
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Figure 5.1: Single slit in SQM

5.1.1 Single slit in SQM

We start by calculating the effects of a single slit in time on the dispersion of
time-of-arrival measurements in SQM.

The gate is located at x = B, centered on clock time A, with width in time
W :

Gτ = e−
(τ−A)2

2W2 (5.1)

We start with a wave function in x:

ϕ̄τ (x) = 4

√
1
πσ2

x

√
1

f
(x)
τ

e
ıp0x− 1

2σ2
xf

(x)
τ

(x−x0− p0
m τ)2−ı p2

0
2m τ

(5.2)

or in p:

ˆ̄ϕτ (p) = 4

√
1
πσ2

p

e
−ıpx0− (p−p0)2

2σ2
p

−ı p2

2m τ
(5.3)

We take the initial position x0 = 0, initial velocity v ≡ p0
m . We assume the

particle is non-relativistic so that v � 1.
We assume that the incoming wave function can be treated as a sum of p

rays. This worked in the time-of-arrival case, has the merit of simplicity, and
lets us make a direct comparison between TQM and SQM.

The evolution of the wave function is simplest in the p basis, but the gate is
defined in the τ basis. Therefore we will need to shift back and forth between
the p and the τ basis. To do this we use:

p = m
x

τ
(5.4)
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with the ancillary definitions of δp and δτ :

p = p0 + δp = mv + δp
τ = τ̄ + δτ

(5.5)

For simplicity we center the particle beam on the gate. If τ̄G is the average
time at which the particle reaches the gate, we arrange it so that:

τG = A (5.6)

With the detector at position x = L, we define T as the average time at
which the particle is detected. This gives:

v =
B

A
=
L

T
(5.7)

We assume the beam is well-focused and use a paraxial approximation. To
quadratic order:

δp = m x
τ̄+δτ −mx

τ̄ ≈ mv
(
− δτ

τ̄ + δτ2

τ̄2

)
δτ = m x

p0+δp
−m x

p0
≈ x

v

(
− δp
p0

+ δp2

p20

) (5.8)

To first order:
δp

p0
≈ −δτ

τ̄
(5.9)

δp and δτ have opposite signs; faster means earlier, slower means later.
If the gate is much wider than the wave function then the particle will pass

through unscathed. If the gate is narrower than the wave function then the
particle will clipped to the width of the gate.

The wave function just before the gate (using p = mB
A+δτ ) is:

ϕ̄G(pre) (δτ) = 4

√
1

πσ2
G

e
− δτ2

2σ2
G

−ı 1
2m ( mB

A+δτ )2
(A+δτ)

(5.10)

with σG defined by:
σG ≡ A

σp
p0

(5.11)

Note that the wave function is correctly normalized for integration over τ .
And that to lowest order:

δτ

σG
= − δp

σp
(5.12)

σG is the measure of how wide the beam is in clock time when it reaches the
gate. It is linear in A and proportional to σp.

For the SQM case, we assume no diffraction in time: the wave function will
be clipped by the gate, not diffracted. This means that to get the wave function
post-gate we must multiply the wave function pre-gate by the gate function:

ϕ̄G(post) (δτ) = e−
(δτ)2

2W2 ϕ̄G(pre) (δτ) (5.13)
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Now we convert back to p space, but on the far side of the gate:

ˆ̄ϕG(post) (p) = 4

√
1
πσ2

p

e
− δp2

2σ2
p
− A2

2W2
δp2

p2
0
−ı p2

2m τG

(5.14)

The evolution from gate to detector only adds a phase:

ˆ̄ϕD (p) = 4

√
1
πσ2

p

e
− δp2

2σ2
p
− δp2

2p2
0

A2

W2−ı
p2

2m τD

(5.15)

We again switch to τ space at the detector. The significant change is from
σp → σ′p where the primed dispersion in p is:

1
(σ′p)

2 =
1
σ2
p

+
A2

W 2p2
0

(5.16)

With this we can write out the wave function at the detector by inspection.
In p space:

ˆ̄ϕD (p) = 4

√
1
πσ2

p

e
− δp2

(σ′p)2
−ı p2

2m τD

(5.17)

In τ space:

ϕ̄D (δτ) = 4

√
1

πσ2
G

e
− δτ2

(σ′G)2
−ımL2

2T

“
1− δτ

T + δτ2

T2

”
(5.18)

The primed dispersion in clock time at the detector is a scaled version of the
dispersion in momentum post gate:

σ′G ≡ T
σ′p
p0

(5.19)

Note the factor 4

√
1

πσ2
G

is unchanged. The ratio:

(
σ′G
σG

)2

(5.20)

tells us what percentage of the particles get through the gate. But this does not
affect the calculation of the dispersion, which is normalized.

The effective dispersion of the wave function is proportional to T . It is useful
to scale that out. The result is controlled by the ratio of the angular width of
the beam in momentum space θp ≡ σp

p0
to the angular width of the gate in time

θG ≡ W
A :

(σ′G)2

T 2
=

θ2pθ
2
G

θ2p + θ2G
(5.21)
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When the gate is wide open, the dispersion at the detector is proportional
to the initial dispersion of the beam:

W →∞⇒ σ′G
T

→ σp
p0

(5.22)

But when the gate is much narrower than the beam, the dispersion at the
detector proportional to the width of the gate:

W → 0 ⇒ σ′G
T

→ W

A
(5.23)

The narrower the gate, the narrower the beam.
While the approximations we have used have been simple, this is a funda-

mental implication of the SQM view of time, of time as classical. In SQM,
wave functions are not, by assumption, diffracted by a gate, they are clipped.
And therefore their dispersion in time must be reduced by the gate rather than
increased by it.

And we have therefore the uncertainty in time-of-arrival:

∆τ
T

=
1√
2
σ′G
T

(5.24)

5.1.2 Single slit in TQM

We now have a baseline from SQM; we turn to the single slit in time in TQM
using the SQM treatment as a starting point.

Clipped

Diffracted

Diffracted

Clipped

W

Source Gate Detector
B L0

A

T

Figure 5.2: Single slit in TQM
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By assumption, the gate will act only on the time part:

G̃t = e−
(t−A)2

2W2 (5.25)

For TQM, we start with a wave function factored in time and momentum:

ψτ (t) = ϕ̃τ (t) ˆ̄ϕτ (p) (5.26)

We are treating the p part as a carrier, using the wave function from above.
The momentum part will be unchanged throughout.

We take the particle as starting with t0 = 0. The wave function pre-gate is:

ϕ̃τ (t) = 4

√
1
πσ2

t

√
1

f
(t)
τ

e
−ıE0t− 1

2σ2
t f

(t)
τ

(t−E0
m τ)2

+ı
E2

0
2m τ

(5.27)

We will again take the particle as non-relativistic: E0 such that E0
m ≈ 1.

On arrival at the gate the time part of the wave function is:

ϕ̃G(pre) (tG) = 4

√
1
πσ2

t

√
1

f
(t)
G

exp

−ıE0tG −
(tG −A)2

2σ2
t

(
1− ı A

mσ2
t

) + ı
E2

0

2m
A


(5.28)

Post gate:

ϕ̃G(post) (tG) = e−
(tG−A)2

2W2 ϕ̃G(pre) (tG) (5.29)

The effect of the gate on the wave function is to rescale it:

1

2σ2
t

(
1− ı A

mσ2
t

) → 1
2W 2

+
1

2σ2
t

(
1− ı A

mσ2
t

) (5.30)

We define rescaling constants σ∗2t , τ
∗ by:

1
W 2

+
1

σ2
t − ıAm

=
1

σ∗2t − ı τ
∗

m

(5.31)

The effect of the gate is to change the shape of the wave function so that it
looks as if it had started at time A− τ∗ with width σ∗. This parameterization
makes it easy to see what the gate is doing to the wave function.

We have by inspection that as the width of the gate goes to infinity, it lets
the wave function through unchanged:

W →∞⇒ σ∗t → σt, τ
∗ → A (5.32)

While as the gate gets narrow, the effective width of the wave function in
time goes to the width of the gate:

W → 0 ⇒ σ∗t →W, τ∗ → 0 (5.33)
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To compute the rescaling factors between these limits we clear the denomi-
nators:(

σ2
t − ı

A

m

)(
σ∗2t − ı

τ∗

m

)
+W 2

(
σ∗2t − ı

τ∗

m

)
= W 2

(
σ2
t − ı

A

m

)
(5.34)

And equate the real and imaginary parts:(
σ2
t +W 2

)
σ∗2t − A

m
τ∗

m = W 2σ2
t

−A
mσ

∗2
t −

(
σ2
t +W 2

)
τ∗

m = −W 2 A
m

(5.35)

This gives us a two by two matrix equation for σ∗2t , τ
∗ which we invert and

apply to the right hand side:(
σ∗2t
τ∗

m

)
=
W 2

D

(
σ2
t +W 2 −A

m

−A
m −

(
σ2
t +W 2

) )( σ2
t

−A
m

)
(5.36)

with determinant:

D =
(
σ2
t +W 2

)2
+
A2

m2
(5.37)

getting:
σ∗2t = W 2

D

((
σ2
t +W 2

)
σ2
t + A2

m2

)
τ∗ = A

DW
4

(5.38)

As a double check, we see we get the expected limits for σ∗2t and τ∗ as
W →∞,W → 0.

σ∗2t and τ∗ in turn gives us the t wave function at the detector. We replace
σt and τG in the initial wave function by σ∗t and τ∗:

ϕ̃D (tD) = N 4

√
1

πσ∗2t

√
1
f ′G

e
−ıE0tD− 1

2σ∗2t f′D
(tD−t̄D)2+ı

E2
0

2m τD
(5.39)

with:
f ′D ≡ 1− ı τ

∗+(T−A)
mσ∗2t

N ≡ 4

√
σ∗2t

σ2
t

√
f ′G
fG

(5.40)

The value of N drops out in the normalization when we calculation the
uncertainty.

The use of rescaling constants makes clear that the effect of the gate is to
reset the wave function, changing its shape and leaving no other memory of the
wave function before the gate. The wave function gets a fresh start with the
gate.

Of particular interest here is the limit W → 0: an extremely narrow gate –
an extremely fast camera shutter – resets the wave function to have a width of
order width of the gate.

And therefore, given the Heisenberg uncertainty principle, the uncertainty
in energy post-gate goes as 1

W . And this in turn forces the wave to diverge more
rapidly in time than would otherwise have been the case.
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At large distances from the gate the dispersion of the wave function in time
σ̃2
τ ≡ σ∗2t f

′
τ goes as:

σ̃τ ∼
τ

m
σE =

τ

mW
(5.41)

We can reapply the analysis from above (subsection 4.3.2) to get:

∆τ =
1√
2

√
σ̃2
τ + σ̄2

τ =
1√
2
T

m

√
1
W 2

+
1

v2σ2
x

(5.42)

So in principle by making W small enough we can make the uncertainty in
time of arrival as large as we wish.

Therefore:

1. In SQM the uncertainty in clock time is directly proportional to the width
of the gate.

2. In TQM the uncertainty in clock time is inversely proportional to the
width of the gate.

These effects are results of the fundamental assumptions. In SQM, time is a
parameter and the gate must clip the incoming wave function. In TQM, time
is an operator and the gate must diffract the incoming wave function.

Therefore the observable effect may be made, in principle, arbitrarily large.
To go from observable in principle to observable in practice will require us

to resolve two difficulties.
First we have to include the relativistic case: it is clear that the 1

v factor will
make it hard for the effects of uncertainty in time to compete with the effects
of uncertainty in space. This is a large part of the motivation for looking at the
multiple particle case in the next section: relativistic velocities imply particle
creation and therefore a need to understand what TQM looks like when there
is more than one particle in play.

Secondly we need a way to separate measurements of uncertainty in time
from measurements of uncertainty in space; an approach is suggested below
(subsubsection 6.8.4).

5.2 Double slit in time

The two principle effects we have been focused on are additional dispersion in
time and the uncertainty principle in time. We have not looked at effects related
to interference in time, mostly notably the double slit in time experiment.

The double slit experiment has been described by Feynman [36] as the “only
mystery” of quantum mechanics. We therefore take a look at it in the TQM
context.

There have been many tests of the double slit experiment in space. The
double slit in time variation has been performed by Lindner et al [73]. In the
Linder et al experiment argon atoms are ionized using few-cycle electric pulses.
If the electron is ionized by a single peak, that scores as a single slit in time; if by
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two, that scores as a double slit in time. The times are of order 500 attoseconds,
much greater then the times we have been concerned with. But the principles
of the experiment are of great interest here.

Horwitz [53] argues that the analysis in Lindner et al is not properly char-
acterized as interference in time, since the analysis in Lindner et al is based on
SQM, in which time is not an operator.

But Horwitz then shows you get the same diffraction spacing using as a
starting point the relativistic dynamics equation4:

ı
∂

∂s
ψs = −E

2 − ~p2

2m
ψs (5.43)

As noted above, this differs from our Schrödinger equation by only a gauge
term. As gauge terms are not physically meaningful, Horwitz has provided us
with the diffraction pattern for TQM.

And as Horwitz gets the same spacing as Lindner did, the double slit in time
experiment does not help us differentiate between SQM and TQM, at least not
to first order5. And therefore – somewhat surprisingly – the double slit in time
experiment does not help us to falsify TQM

And it follows in turn that it is not the double slit but the single slit exper-
iment which provides the decisive test of TQM.

6 Multiple particles

“In what follows we assume that even though A = δm is formally
divergent, it is still `small´ in the sense that it is of the order of 1/137
times the electron mass.” – J. J. Sakurai [96]

6.1 Why look at the multiple particle case?

In principle, we have enough to falsify TQM. Why then look at the multiple
particle case?

1. From the above we see the effects of TQM will be largest at relativistic
velocities and short times. This implies we need to look at high energies
and, since high energies imply particle creation, at the multiple particle
case. (We thank Dr. Steve Libby for bringing this point to our attention.)

2. There is the further concern that TQM may not be renormalizable. If the
loop integrals in SQM are barely renormalizable, with the addition of one
more dimension the loop integrals in TQM may well become completely
intractable.

4Note the sign of the evolution parameter s here is opposite from the sign used in Land
and Horwitz [72].

5To higher orders, a preliminary examination suggests that while the spacing peak-to-peak
is unaffected, the widths of the individual peaks are increased.
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3. Extending TQM to the multiple particle case opens up some new effects.

4. And then there is the intrinsic interest of the question.

At the same time, there are formidable difficulties: the literature on quantum
field theory is vast and complex (among the references we have found helpful
are [13, 12, 95, 94, 92, 62, 90, 115, 58, 116, 59, 74, 119, 85, 21, 71, 54]).

We will focus on analyzing a toy model in a series of toy situations – but in
a way that will make clear how to extend the toy model to more realistic and
useful cases.

Since the complications of spin are inessential here, we will look at a simple
model with three massive spinless particles A, B, and C (correspondingly very
loosely to the electron, photon, and proton).

As in the single particle case, we will first work out the rules for the various
pieces of the path integral, then apply these rules to a few simple cases. There
is no possibility of covering all cases, but we will do enough to make clear how
to extend the approach to an arbitrary problem.

We will require, as before, manifest covariance and consistency with estab-
lished results. We will also require that the treatment of the single and multiple
cases be consistent; the single particle case should appear at the end to be a
specialized version of the multiple particle case.

The analysis divides into two parts:
First, we use a Lagrangian approach to derive the appropriate Feynman path

integrals. This approach will be loosely parallel to the approach in the single
particle case:

1. Extend Fock space from 3D to 4D.

2. Reuse the existing field theory Lagrangian densities by interpreting the
time as the coordinate time.

3. Compute the action by integrating over both clock and coordinate times,
so that the integrals over the Lagrangian density goes from

∫
dτd~x →∫

dτdtd~x.

4. Verify that the free particle propagator computed with this approach
matches the single particle free particle propagator.

The result is that we get the TQM Feynman diagrams from their SQM equiva-
lents by keeping the topology of lines and vertexes the same, but replacing the
SQM parts with their TQM equivalents. We replace:

1. SQM wave functions with TQM,

2. SQM propagators with TQM,

3. and SQM integrals over three space dimensions and clock time with TQM
integrals over the three space dimensions, coordinate time, and clock time.
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In principle, we could simply have postulated these substitutions; the derivation
from first principles adds depth to our understanding, and also makes possible
the extension of TQM to problems not amenable to attack via the Feynman
diagram approach.

In the second part, we apply the derived Feynman rules to a few simple
cases:

1. Free particle,

2. Emission of a particle,

3. Absorption of a particle,

4. Exchange of a particle,

5. Loop correction to the mass.

By combining these elements we can in principle calculate any Feynman dia-
gram.

The loop calculation provides a preliminary success for TQM. If treated
naively, the loop diagrams in TQM are divergent. But the combination of Morlet
wavelet decomposition and entanglement in time – neither alone sufficient –
causes the loop integrals to converge.

As we develop the multiple particle case, we will see a number of additional
effects:

1. anti-symmetry in time,

2. forces of anticipation and regret,

3. interference and entanglement in time.

With the approach taken here we have no free or adjustable parameters. We
have a simple transition from the single to the multiple particle treatment. We
do not have the familiar ultraviolet divergences. And we have a large number
of opportunities for experimental test.

6.2 ABC model

The simplest model we can find that lets us cover the basic interactions has
three spinless, massive particle species A, B, and C. We assign them non-zero
masses m, µ, and M respectively. We will take µ as small as it needs to be.
They are real fields. A’s emit and absorb B’s with amplitude λ. C’s emit and
absorb B’s with amplitude Λ. A’s and C’s do not talk with each other directly.
There are no other interactions.

Loosely, A is a spinless model of an electron, B of a photon, and C of a
proton.

We will focus primarily on the A and B particles. We will need the C for
the discussion of particle exchange.
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Figure 6.1: Interactions in the ABC model

6.3 Fock space

In the single particle case we generalized the wave functions from three dimen-
sions to four. Here we generalize Fock space from three dimensions to four. As
paths may be seen as a series of wave functions, one wave function per clock
tick, this implicitly generalizes the associated paths from three dimensions to
four as well.

We use box normalization. The box runs from −L → L in all four coordi-
nates: coordinate time and the three space dimensions. It is taken to extend
well past the wavelets we are working with.

Using box normalization means that the Fourier transforms will be discrete.
Discrete Fourier transforms are convenient for discussing various points of prin-
ciple and to help in visualizing the field theory calculations. For the actual
calculations we will use continuous wave functions.

In general the extrusion from three to four dimensions is straight forward; a
few specific points require attention.

6.3.1 Fock space in three dimensions

x LL

T

0
0

a

space

Clock time

Figure 6.2: Fock space in three dimensions
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Single particle basis wave functions We will focus on the x coordinate
here; y and z are the same. We break our box into 2M pieces, implying a lattice
spacing a ≡ L

M . a has dimensions of length. This lets us replace the smoothly
varying x with the values of x at a series of points:

x ∈ [−L,L] → x = (−aM, . . . , 0 . . . , aM) (6.1)

The continuous/discrete translation table is:

(x, y, z) ↔ (ai, aj, ak) (6.2)

Integrals over space go to sums over i, j, k:
L∫

−L

dxdydz ↔ a3
M∑

i,j,k=−M

(6.3)

The coordinate basis is trivial, just Kronecker δ functions:

φ~x′ (~x) ≡ δ3 (~x− ~x′) ↔ δii′δjj′δkk′ (6.4)

We assume the wave functions are periodic in 2L. The periodic condition is
not important; L will be chosen large enough that all interesting wave functions
are well inside of it. They will be trivially periodic because they are zero on
both sides of each dimension.

We normalize the basis wave functions to one:
L,L,L∫

−L,−L,−L

d~xφ∗~k (~x)φ~k′ (~x) = δ~k~k′ (6.5)

giving:

φ~k (~x) =
1

√
2L

3 exp
(
ı~k · ~x

)
(6.6)

Now we can expand an arbitrary wave function in terms of the basis func-
tions:

φ (~x) =
∑
~k

c~kφ~k (~x) (6.7)

The measure in the path integrals is in terms of the c’s:

Dφ ≡
N∏
n=0

Dnφ,Dnφ ≡
∏
~k

dc~k (6.8)

so there is one set of space integrals at each clock tick.
At the end of the discrete part of the calculation we will be letting M , N ,

and L go to infinity. As the effects of TQM are averaged out over larger times
we will not be letting T go to infinity, even in the SQM case.

In the continuum limit we have:

φ~k (~x) → 1
√

2π
3 exp

(
ı~k · ~x

)
(6.9)
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Multi-particle wave functions Things become interesting when we go to
multiple particle wave functions. For two particles:

φ~k~k′ (1, 2) ≡ 1√
2

(
φ~k (1)φ~k′ (2) + φ~k (2)φ~k′ (1)

)
(6.10)

As we get to larger and larger numbers of particles, these wave functions
become tricky to write out and manage. To simplify, we use the familiar anni-
hilation and creation operators, defined by:

a†~k

∣∣n~k〉 =
√
n~k + 1

∣∣n~k + 1
〉

a~k
∣∣n~k〉 = √

n~k
∣∣n~k − 1

〉 (6.11)

with the usual commutation operators:[
a~k, a

†
~k′

]
= δ~k~k′ (6.12)

We define the single particle operator:

φ̄ (~x) =
∑
~k

a~kφ̄
†
~k

(~x) + a†~k
φ̄~k (~x) (6.13)

An arbitrary multiple particle basis state may be built up as products of
these: ∣∣{n~k}〉 =

1√∏
~k

n~k!

∏
~k

(
a†~k

)n~k |0〉 (6.14)

where
{
n~k
}

is a specific set of occupation numbers.
We define the general wave function in the occupation number basis:∑

{n~k}
c{n~k}

∣∣{n~k}〉 (6.15)

with normalization:
1 =

∑
{n~k}

c2{n~k} (6.16)

Note we are not defining the creation and annihilation operators in terms
of an infinite set of harmonic oscillators; we are defining them by their effects
on Fock space. We can think of movement in Fock space as a giant game of
snakes and ladders, with the creation operators as the ladders, the annihilation
operators as the snakes.

6.3.2 Fock space in four dimensions

Single particle basis wave functions The development in TQM works
along the same lines but with one more dimension t and a fourth index h. We
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Figure 6.3: Fock space in four dimensions

are treating coordinate time essentially like a fourth spatial dimension, much
like the x4 ≡ ıct trick of earlier works on special relativity. Paths in TQM will
typically start at τ = 0 and finish at some defined clock time τ = T . But their
paths in coordinate time may well dive before t = 0 and climb past t = T . To
make sure that all of the relevant paths are included in our box, we require that
−L� 0 and L� T . Using the same L for time as for space, and requiring that
L→∞ accomplishes this.

The continuous/discrete translation table is now:

(t, x, y, z) ↔ (ah, ai, aj, ak) (6.17)

So we have:
t = ah (6.18)

Note there is no requirement that the lattice spacing a in coordinate time t
match the step spacing ε in clock time τ ; In general we will have: a 6= ε.

We promote integrals and sums over three dimensions to integrals and sums
over four: ∫

d~x→
∫
dtd~x,

∑
ijk

fijk →
∑
hijk

fhijk (6.19)

φx′ (x) ≡ δ4 (x− x′) ↔ δhh′δii′δjj′δkk′ (6.20)

The k’s are again periodic. We need to think for a moment about how our
wave functions get their start in life. At clock time zero, the TQM wave function
will look something like:

ϕ̃0 (t) ∼ exp

(
− (t− t0)

2

2σ2
t

)
(6.21)

One subtlety: we always develop our wave functions from τ = 0 → τ = T .
Consider the wave function at τ = 0. How did it get there? what of its past?
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Won’t at some time the wave function have existed before −L, before the box
appeared? The working answer is that the shape of the wave function at τ = 0
tells us all we need to know of its history before that time. If the wave function
at τ = 0 is well within the box, if σt � L, we have what we need. What
happened in the past, stays in the past.

We normalize the basis wave functions to one:

L,L,L,L∫
−L,−L,−L,−L

dtd~xφ∗k (t, ~x)φk′ (t, ~x) = δkk′ (6.22)

giving:

φk (x) =
1

4L2
exp (−ıkx) (6.23)

Now we can expand an arbitrary wave function in terms of the basis func-
tions:

φ (x) =
∑
k

ckφk (x) (6.24)

Again, the measure in the path integrals is in terms of the c’s::

Dφ ≡
N∏
n=0

Dnφ,Dnφ ≡
∏
k

dck (6.25)

so there is one set of time and space integrals at each clock tick. At the end of
the discrete part of the calculation we will be letting M , N , and L go to infinity.
And we will not be letting T go to infinity.

In the continuum limit we have:

φk (x) → 1
4π2

exp
(
−ıwt+ ı~k · ~x

)
(6.26)

Multiple particle wave functions Symmetrization in four dimensions works
exactly as in three. For two particles we have:

φkk′ (1, 2) ≡ 1√
2

(φk (1)φk′ (2) + φk (2)φk′ (1)) (6.27)

And the creation and annihilation operators work in the same way:

a†k |nk〉 =
√
nk + 1 |nk + 1〉

ak |nk〉 =
√
nk |nk − 1〉 (6.28)

With the commutators: [
ak, a

†
k′

]
= δkk′ (6.29)

Single particle operator:

φ (x) =
∑
k

akφ
†
k (x) + a†kφk (x) (6.30)
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Arbitrary multiple particle:

|{nk}〉 =
1√∏
k

nk!

∏
k

(
a†k

)nk

|0〉 (6.31)

where {nk} is a specific set of occupation numbers, now over all possibilities in
four dimensions.

And we again define the general wave function as a sum over all possible
{nk}: ∑

{nk}

c{nk} |{nk}〉 (6.32)

with normalization:
1 =

∑
{nk}

c2{nk} (6.33)

This defines the Fock space in four dimensions, along the same lines as the
one in three. We are again playing snakes and ladders, but with four dimensional
snakes and ladders rather than three.

6.3.3 Anti-symmetry in time

We assume the same overall symmetry properties are required in four dimensions
as in three. This implies that wave functions can use the coordinate time to help
meet their symmetry responsibilities, with potentially amusing implications. In
particular if the wave function is anti-symmetric in time, it will have the “wrong”
symmetry properties in space.

This is testable, at least in principle.
Say we have wide wave functions in time and space A (t) and B (x), and

narrow wave functions in time and space a (t) and b (x). The particles are
identified as 1 and 2.

An acceptable initial wave function is:

ϕsym (1, 2) =
1√
2

(A (t1)B (x1)a (t2)b (x2) +A (t2)B (x2)a (t1)b (x1)) (6.34)

This clearly has the right symmetry between particles 1 and 2. We wish to
break this down into sums over products of wave functions in time and space.

The symmetrical basis functions in time and space are:

ϕ̃sym (1, 2) = 1√
2

(A (t1)a (t2) +A (t2)a (t1))
ϕ̄sym (1, 2) = 1√

2
(B (x1)b (x2) +B (x2)b (x1))

(6.35)

If we use these as a product we get:

ϕ̃sym (1, 2) ϕ̄sym (1, 2) =
1
2


A (t1)B (x1) a (t2) b (x2)
+A (t1)B (x2) a (t2) b (x1)
+A (t2)B (x1) a (t1) b (x2)
+A (t2)B (x2) a (t1) b (x1)

 (6.36)
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where the two middle terms do not belong.
The anti-symmetric basis functions in time and space are:

ϕ̃anti (1, 2) = 1√
2

(A (t1)a (t2)−A (t2)a (t1))
ϕ̄anti (1, 2) = 1√

2
(B (x1)b (x2)−B (x2)B (x1))

(6.37)

and their product is:

ϕ̃anti (1, 2) ϕ̄anti (1, 2) =
1
2


A (t1)B (x1) a (t2) b (x2)
−A (t1)B (x2) a (t2) b (x1)
−A (t2)B (x1) a (t1) b (x2)
+A (t2)B (x2) a (t1) b (x1)

 (6.38)

Therefore the sum of the completely symmetric and the completely anti-
symmetric gives the target wave function:

ϕsym (1, 2) =
1
2

(ϕ̃sym (1, 2) ϕ̄sym (1, 2) + ϕ̃anti (1, 2) ϕ̄anti (1, 2)) (6.39)

To get a wave function which is completely symmetric in time and space
together we need to use both the symmetric and the anti-symmetric basis func-
tions.

6.4 Lagrangian

What should we use as a Lagrangian? We will look at this first from a classical
perspective.

In SQM the Lagrangian for a massive spin 0 free particle is given by:

L̄free
[
φ, φ̇

]
=

1
2
∂φ

∂τ

∂φ

∂τ
− 1

2
∇φ∇φ− m2

2
φ2 (6.40)

In classical mechanics, the wave functions may be written as sums over the
basis plane waves:

φτ (~x) ∼
∑
~k

cτ,~kφτ,~k (~x) (6.41)

The action is the integral of this over space and clock time:

T∫
0

dτd~xL̄free
[
φ, φ̇

]
(6.42)

Typically we let the limits in clock time go to ±∞, usually somewhere near
the end of the analysis. Here that would average out the effects of any dispersion
in time. So just as in the definition of Fock space, we keep the total clock time
finite.

How to extend this Lagrangian to include coordinate time?
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By our first requirement, x and t have to rotate into each other under a
Lorentz transformation. The only way to do this is to change clock time to
coordinate time: τ → t. So we start with:

Lfree [φ] =
1
2
∂tφ∂tφ−

1
2
∇φ∇φ− m2

2
φ2 (6.43)

The wave functions may be written as sums over the basis plane waves, with
all the clock time dependence in the coefficients c.

φτ (t, ~x)
∑
k

c(k)τ φk (t, ~x) (6.44)

Neither basis functions nor operators are functions of clock time. Therefore
the Lagrangian is not. To include the dependence on clock time we will need to
include the integral over clock time from 0 to T

S0 ∼
T∫

0

dτ

∫
dtd~xLfree [ϕ] (6.45)

We can write the Lagrangian in momentum space as:

L̂free ∼ w2 − ~k2 −m2

2
(6.46)

The integral over clock time gives:

ı

∫
dτ → ı

w2 − ~k2 −m2

2
(6.47)

This has two problems: it is not dimensionless and it does not match the
results for the single particle propagator. We can fix both by adding a factor of
1
m :

L(free) → 1
2m

(
∂tφ∂tφ−∇φ∇φ−m2φ2

)
(6.48)

With that noted, we will get the single particle propagator:

K̂ ∼ exp

(
ı
w2 − ~k2 −m2

2m
τ

)
(6.49)

Our recipe for going from an existing SQM Lagrangian and action to the
equivalent TQM Lagrangian and action is therefore:

1. replace the time in the SQM Lagrangian with coordinate time,

2. replace the integral over three space dimensions with an integral over
coordinate time and the three space dimensions,

3. add an overall integral over clock time,
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4. divide the Lagrangian by the mass of the particle,

5. and in the case of a massless particle – not covered here – use the familiar
trick of taking the limit as the mass goes to zero

Spelling this out for the free Lagrangian we get:

S =

T∫
0

dτdtd~x
1

2m
(
∂tφ∂tφ−∇φ∇φ−m2φ2

)
(6.50)

The extension to include B,C particles is:

LAB [A,B,C] = Lfree [A] + Lfree [B] + Lfree [C]− λ

2
ABA− Λ

2
CBC (6.51)

Since there is no longer any explicit dependence on clock time in the TQM
Lagrangian, the corresponding Hamiltonian is merely −L, with the slightly
disconcerting result that there are no non-trivial canonical momenta.

In SQM the next step is to promote the classical fields to operators:

φ̄ (~x) →
∑
~k

a~kφ̄
†
~k

(~x) + a†~k
φ̄~k (~x) (6.52)

so in TQM we do the same:

φ (x) →
∑
k

akφ
†
k (x) + a†kφk (x) (6.53)

6.5 Path integrals

With the Lagrangian defined, we can write the full kernel as:

KT ≡
∫
Dφ exp

ı T∫
0

dτ

∫
d4xL [φ]

 (6.54)

This notation conceals much complexity. We start with the zero dimensional
free case.

6.5.1 Zero dimensional free case

The basis of wave functions for the zero dimensional case is the set of possible
occupation numbers from 0 to infinity. Any wave function may be written as a
sum over these:

ψ =
∞∑
l=0

cl |l〉 (6.55)

with the normalization condition that:

1 =
∞∑
l=0

c2l (6.56)
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a†a†

space

Figure 6.4: Zigzag paths in clock time

We take the zero single particle wave function as simply the number one.
For multiple particles we have:

φ2 = 1√
2!

(φ1 (1)φ1 (2) + φ1 (2)φ1 (1))
φ3 = 1√

3!
(φ1 (1)φ1 (2)φ1 (3) + . . .)

. . .

(6.57)

The number states are orthogonal:

〈l | l′〉 = δll′ (6.58)

The amplitude to go from one wave function to another is given by a Fock
space sandwich:

〈ψ′|KT |ψ〉 =

〈 ∞∑
l′=0

cl′φl′

∣∣∣∣∣
∫
Dφ exp

ı T∫
0

dτL

∣∣∣∣∣
∞∑
l=0

clφl

〉
(6.59)

with measure:

Dφ =
n=N∏
n=0

Dφ(n),Dφ(n) =
∞∏
l=0

dc
(n)
l (6.60)

and Lagrangian:
L = −m

2
(
aa+ aa† + a†a+ a†a†

)
(6.61)

Each term is a pair of operators. Two terms change the particle numbers;
two do not. The term with two annihilation operators will reduce the number of
particles by two, the term with two creation operators will increase the number
of particles by two.

This means that even the simple free case has us moving up and down in
Fock space. We have to deal with populations of particles.
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We proceed discretely:

exp

ı T∫
0

dτL

→ exp

(
ıε

N∑
n=1

L

)
(6.62)

and one step at a time:
exp (ıεL) ≈ 1 + ıεL (6.63)

We will start with a common tactic: we will throw out all disconnected
diagrams. For instance at one clock tick an a†a† term could create a virtual
particle/anti-particle pair which a few clock ticks later an aa then deletes. These
represent self-interactions of the vacuum and are mere background noise, in
common across all diagrams.

We will also use normal ordering (“always annihilate before you create”):

1
2
(
aa† + a†a

)
→ a†a+

1
2

= n̂+
1
2

(6.64)

Here n̂ is the number operator. The 1
2 term gives us an overall constant,

which we can also ignore, since it also is present for all diagrams.
There is a third problem: sometimes a particle can interact with a virtual

pair. The particle is evolving in clock time and encounters a term with two
annihilation operators. By chance, a particle in the vacuum encounters the
same term at the same clock tick. To an outside observer, it looks as if our
particle has reversed direction in clock time and is now headed backwards. This
is now a connected diagram, however, so the previous rules do not exclude it.

This is however implicitly included in our analysis of particle exchange below
– the middle part of the diagram is the exchanged particle. We will drop these
terms unless we explicitly need them, e.g. if we are looking at pair creation or
annihilation.

With this the Lagrangian reduces to a sum over number operators:

L → −ımn̂

2
= −ım

2

∞∑
l=0

lδll′ (6.65)

We return the infinitesimal Lagrangian to the exponential:

exp

(
−ıε

N∑
n=1

m

2

∞∑
l=0

lδll′

)
(6.66)

and get:

Kτ (l; l′) = exp
(
−ım

2
lτ
)
δll′ (6.67)

which makes sense as the zero dimensional matrix element: if there are l particles
present, they oscillate l times as quickly as one.
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6.5.2 Four dimensional free case

We now extend the zero dimensional treatment to four dimensions. Free La-
grangian:

Lfree [φ] =
1

2m
∂φ

∂t

∂φ

∂t
− 1

2m
∇φ∇φ− m2

2m
φ2 (6.68)

where φ is an operator:

φ (x) =
∫
d4kâkφ

†
k (x) + â†kφk (x) (6.69)

Again the amplitude to go from one state to another is computed by con-
structing a Fock space sandwich:

Aε = 〈{nk′} | exp
(
ıε

∫
d4xL [φ, ∂φ]

)
|{nk}〉 (6.70)

We will use as the single particle wave functions the exponentials φk (x) ≡
1

4π2 exp (−ıkx). In momentum space the partial derivatives ∂x turn into powers
of k. We have the overall integral over x and (from the transition to momentum
space) integrals over k and k′ for each of the two operators in each term. The
basis functions integrated over x give δ functions in k, k′. The integral over k’
gives an integral over k. We are left with:∫

d4xφφ→
∫
d4k

(
aka−k + aka

†
k + a†kak + a†ka

†
−k

)
(6.71)

This is the zero dimensional case with an index k. All four terms conserve
momentum, but as before two terms change the particle numbers, two do not.

The momentum space integral of the Lagrangian is:

− ı

τ∫
0

dτ ′fknk = −ıfkτ (6.72)

giving the kernel for one frequency as:

KT ∼ exp (−ıfknkτ) (6.73)

If nk = 1 we have the TQM single particle propagator:

K̂τ (k; k′) = exp (−ıfkτ) δ (k − k′) (6.74)

6.5.3 Measure

Fock space consists of products of basis wave functions:

|{nk}〉 → |n0k0〉 |n1k1〉 |n2k2〉 . . . (6.75)

A path is a series of positions in this Fock space. The measure weights each
possible position equally, so the measure is:

Dφ ≡
N∏
n=0

Dnφ,Dnφ ≡
∏
k,nk

dc
(n)
k,nk

(6.76)

69



6.5.4 Interaction terms

n 3

n 2

n 1

…

…

n

n+1

n+2

n+3

p

kq

aq
†bk

†ap + apbk
†aq

†

2

Figure 6.5: Interaction term in ABC model

The coupling term is represented by a factor of the form:

exp
(
−ıελ

∫
d4x

ABA

2

)
(6.77)

Assume we are looking at the case where this happens at clock tick number
n. Note – in striking contrast to the SQM case – the interaction term has no
dependence on n, on the clock time.

As N →∞ ε→ 0 so we can approximate the exponential by:

1− ıελ

∫
d4x

ABA

2
(6.78)

The path integral is formed by doing the integrals from 0 → n− 1, then the
integral over the interaction term at n, then the integrals from n+1 → N . The
terms before n are included in the free propagator(s) from 0 to n; the terms
after n are included in the free propagators from n to N , we have the interaction
term to consider here.

The integral over space at step n will give us a δ function in momentum at
step n: δ (k + q − p). Notice that four momentum is conserved at the vertex.
This is another point of difference with SQM. In SQM only the three momentum
is conserved at a vertex, the conservation of energy comes from the integral over
the clock time.
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For the nth time in our path integral from 0 to T , we role the dice in our
game of snakes and ladders. Spelled out in terms of a and b operators we have:

Ap = apφ
†
p + a†pφp

Bk = bkφ
†
k + b†kφk

Aq = aqφ
†
q + a†qφq

(6.79)

We might drop down one step in terms of A particles with momentum p
while going up one step for A particles with momentum q and one step for B
particles with momentum k. This would be accomplished by a term of the form
λa†qb

†
kap. There are two such terms in the interaction term, neatly canceling

out the factor of 1
2 . To contribute to the first order perturbation diagram the

interaction must hit exactly once on the way from 0 to N. Result:

ψ̂T (q, k) = −ıλ
T∫

0

dτ

∫
dpK̂

(m)
Tτ (q) K̂(µ)

Tτ (k) δ (q + k − p) K̂(m)
τ (p) ϕ̂ (p) (6.80)

6.5.5 Full propagator

We now have what is required to compute an arbitrary propagator.
The topology of the diagrams is unchanged from SQM: we get exactly the

same set of diagrams, but with the intermediate integrals and initial wave func-
tion(s) over four dimensions rather than three.

The general propagator is given by:

〈{nk′} |
∫
Dφ exp

ı T∫
0

dτLfree [φ]− V [φ]

 |{nk}〉 (6.81)

The Feynman diagrams are generated by expanding this expression in powers
of the coupling constant.

6.6 Free particles

How does the free propagator in TQM compare to the free propagator in SQM?

k = k 2 + m2 ı k = k 2 + m2 ı

Figure 6.6: Contour for retarded propagator
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We compute the free propagators for SQM and then TQM. We work these
out for an A particle; the B and C are the same.

Our goal here to establish clearly the relationship between the SQM and
TQM propagators; to make an apples-to-apples comparison between the two.
The best way to do this is to look not just at the propagators but – as usual –
at their effects on Gaussian test functions.

We will take as the starting point the respective differential equations for
the SQM and TQM propagators. These may be derived from the path integral
approach using the powerful generating approaches described in for instance
Kashiwa [63] and Zee [119]. Here we take them as a given of the analysis.

6.6.1 Free particle in SQM

We start with the Klein-Gordon equation. We define the propagator by:(
− ∂2

∂τ2
+∇2 −m2

)
K̄τ (~x; ~x′) = ıδ (τ) δ3 (~x− ~x′) (6.82)

In momentum space we have:

−ı
k2
0 − ~k2 −m2

=
1

(2π)4
(6.83)

We choose retarded boundary conditions. This implies that both poles have
a small negative imaginary part:

k0 = ±ω~k − ıε, ω~k ≡
√
m2 + ~k2 (6.84)

and the inverse Fourier transform is:

K̄τ (~x, ~x′) = −ı lim
ε→0

1
(2π)4

∫
dk0d~k

exp
(
−ık0τ + ı~k · (~x− ~x′)

)
(k0 + ıε)2 − ~k2 −m2

(6.85)

Doing the k0 integral explicitly we get:

K̄τ (~x, ~x′) =
1

(2π)3

∫
d~k

exp
(
−ıω~kτ

)
− exp

(
ıω~kτ

)
2ω~k

exp
((
ı~k · (~x− ~x′)

))
(6.86)

This corresponds to the basis (see for instance section 2.3 of Peskin [90]):√
2ω~k√
2π

3 exp
(
ı~k · ~x

)
(6.87)

To make a closer comparison to TQM we shift to the basis functions:

1
√

2π
3 exp

(
i~k · ~x

)
(6.88)
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This gives:

K̄τ (~x, ~x′) =
∫
d~k

exp
(
−ıω~kτ

)
− exp

(
ıω~kτ

)
(2π)3

exp
((
ı~k · (~x− ~x′)

))
(6.89)

We apply this to a Gaussian test function. We choose one centered on
~k0, initial position ~x0. We choose one which is separable in the three space
directions. We use the obvious definition δ~k ≡ ~k − ~k0:

ˆ̄ϕ0

(
~k
)

= ˆ̄ϕ(y)
0 (ky) ˆ̄ϕy0 (ky) ˆ̄ϕ(z)

0 (kz) (6.90)

where the x Gaussian test function is:

ˆ̄ϕ(x)
0 (kx) = 4

√
1
πσ̂2

x

e
−ıkxx0−

(kx−k
(0)
x )2

2σ̂2
x = 4

√
1
πσ̂2

x

e
−ıkxx0−

δk2
x

2σ̂2
x (6.91)

and y, z the same.
We include both positive and negative frequencies for each wave vector.
We now take as a first working assumption that our incoming wave function

is dominated by the positive frequency part. (This is the same trick we used in
the analysis of the time-of-arrival measurements in subsection 4.3). If we were
going to examine phenomena like Zitterbewegung we would need to relax this
assumption.

As a second assumption, we will assume our incoming Gaussian test function
is reasonably well-focused, σ̂k small, so that we can replace the factor overall
factor by its expectation:

1√
2ω~k

→ 1√
2ω~k0

(6.92)

We therefore simplify our kernel to:

ˆ̄Kτ

(
~k;~k′

)
=

1
2ω~k0

exp
(
−ıω~kτ

)
δ3
(
~k − ~k′

)
(6.93)

We next expand ω~k in powers of the kinetic energy:

ω~k ≈ m+
~k2

2m
−

~k4

8m3
+O

(
~k6
)

(6.94)

Applied to the Gaussian test function we get:

ˆ̄ϕτ
(
~k
)

=
∫
d~k′ ˆ̄Kτ

(
~k;~k′

)
ˆ̄ϕ0

(
~k
)

(6.95)

or:

ˆ̄ϕτ
(
~k
)

= exp

(
−ımτ − ı

~k2

2m
τ + ı

~k4

8m3
τ

)
ˆ̄ϕ0

(
~k
)

(6.96)
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We see on the SQM side the relationship between the various levels of anal-
ysis: the particle at rest (m term), the particle moving slowly (~k2) term, and
the particle moving relativistically (~k4 and higher corrections).

We summarize the SQM propagator (as applied to a Gaussian test function)
as:

ˆ̄Kτ

(
~k
)

= exp

(
−ımτ − ı

~k2

2m
τ + ı

~k4

8m3
τ

)
(6.97)

6.6.2 Free particle in TQM

We have the free propagator from above:

K̂τ

(
~k
)

= exp

(
−ım

2
τ + ı

w2

2m
τ − ı

~k2

2m
τ

)
(6.98)

There are three differences between the TQM and SQM propagators. The
first two are not that interesting for our purposes; the third is critical.

First we have an overall factor of:

exp
(
−ım

2
τ
)

(6.99)

as compared to the factor of:

exp (−ımτ) (6.100)

in the SQM propagator.
The frequency associated with, say, the mass of an electron is:

me

h̄
≈ .51 · 106eV

6.6 · 10−16eV sec
= 7.7 · 10−24sec−1 (6.101)

This is of order the frequencies associated with Zitterbewegung, about one
million times the frequencies we are dealing with here. As Zitterbewegung has
not itself been measured, we would have no comparison point on the SQM side.
We will therefore ignore this factor.

The relativistic correction factor:

exp

(
+ı

~k4

8m3
τ

)
(6.102)

is present in SQM but not in TQM.
These represent higher order corrections. As TQM is predicting significant

differences from SQM in even the non-relativistic case, relativistic corrections
to SQM are not needed (and clutter up the analysis).

The key difference is the factor of:

exp
(

+ı
w2

2m
τ

)
(6.103)
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This represents the extension of the function in time/energy. Basically the
TQM propagator is the SQM propagator with additional fuzziness in time/energy.
This difference is the focus of attention in this work.

So we will take the SQM propagator as:

ˆ̄Kτ

(
~k
)

= exp

(
−ı

~k2

2m
τ

)
(6.104)

the TQM propagator as:

K̂τ

(
~k
)

= exp

(
ı
w2

2m
τ − ı

~k2

2m
τ

)
= exp

(
ı
w2

2m
τ

)
ˆ̄Kτ

(
~k
)

(6.105)

We apply this to a Gaussian test function. We use a Gaussian test function
in energy times the previous Gaussian test function in three momentum.

ϕ̂0

(
w,~k

)
= ˆ̃ϕ0 (w) ˆ̄ϕ0

(
~k
)

(6.106)

with energy part:

ˆ̃ϕ0 (w) ≡ 4

√
1
πσ̂2

t

e
ıwt0− (w−w0)2

2σ̂2
t (6.107)

From the entropic analysis above (subsection 4.1):

w0 ∼ ω~k
σ̂2
t ∼ σ̂2

x + σ̂2
y + σ̂2

t
(6.108)

Application of the TQM kernel to the Gaussian test function is trivial:

ϕ̂τ (k) = exp
(
ı
k2 −m2

2m
τ

)
ϕ̂0 (k) (6.109)

We have therefore recovered, at the cost of a few approximations, the single
particle propagator for TQM.

We turn now to specific applications.

6.7 Emission of a particle

What does the emission of a particle look like in TQM?

6.7.1 Overview

We look at the case where an A particle emits a B. The initial particle ex-
pectation and dispersion are given; we wish to compute the outgoing particle
expectations and dispersions.

We expect that this emission diagram will be part of a larger calculation.
We will assume for convenience here that the momentum space expectations of
the incoming particle are on-shell, but that need not be true in general.
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Figure 6.7: An A particle emits a B particle

We start with a Gaussian test function A, extended in space for the SQM
case, in time and space for TQM.

The initial expectation and dispersion are given at clock time τ0. We wish
to compute the final expectations and dispersions at clock time τ2. The B has
an amplitude λ to be emitted at each intermediate clock time τ1.

In a first order perturbation expansion we would integrate over the inter-
mediate clock time τ1. But here we will focus on a smaller piece of the puzzle,
looking at the contribution to the final wave function from a single point in
clock time. We look at:

ψ2 (p, k) = −ıλ
∫
dpK

(m)
21 (p′)K(µ)

21 (k) δ (p′ + k − p)K(m)
10 (p)A0 (p) (6.110)

We look at this first in SQM then in TQM.

6.7.2 Emission of a particle in SQM

We start our A particle as a Gaussian test function in momentum space:

ˆ̄A0 (~p) = ˆ̄ϕ(x)
a (py) ˆ̄ϕ(y)

a (px) ˆ̄ϕ(z)
a (px) (6.111)

For the x component we have:

ˆ̄ϕ(x)
a (px) ≡ 4

√
1
πσ̂2

x

e
−ıpxxa−

(px−p
(a)
x )2

2σ̂2
x (6.112)
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with y, z in parallel. The full wave function at τ0 is:

ˆ̄A0 (~p) = 4

√√√√ 1

π3det
(

ˆ̄Σ
)e−ı~p·~xa− 1

2 δ~p·
ˆ̄Σ
−1

·δ~p (6.113)

with ancillary definitions:

δ~p ≡ ~p− ~pa

ˆ̄Σ ≡

 σ̂2
x 0 0
0 σ̂2

x 0
0 0 σ̂2

x

 (6.114)

We are dropping the parts of the kernel that depend on the rest mass. For
the A particle these are independent of the interaction and therefore irrelevant.
For the B particle the exp (−ıµτ) is not independent of the interaction, but in
the limit as µ→ 0 this factor is constant and therefore also irrelevant.

The kernel that carries A from τ0 → τX is:

ˆ̄K(m)
X (~p) = exp

(
−ı ~p

2

2m
τX

)
(6.115)

So the A wave function at X is:

ˆ̄AX (~p) = 4

√√√√ 1

π3det
(

ˆ̄Σ
)e−ı~p·~xa− 1

2 δ~p·
ˆ̄Σ
−1

·δ~p−ı ~p2

2m τX (6.116)

The integral over the δ function at τX gives:

ˆ̄ψ2

(
~p′,~k

)
= −ıλ ˆ̄K(m)

2X (~p′) ˆ̄K(µ)
2X

(
~k
)

ˆ̄AX
(
~p′ + ~k

)
(6.117)

We have replaced the initial momentum with the sum of the final momenta.
The post-vertex kernels are:

ˆ̄K(m)
2X (~p′) = exp

(
−ı (~p

′)2

2m
τ2X

)
, ˆ̄K(µ)

2X

(
~k
)

= exp

(
−ı
~k2

2µ
τ2X

)
(6.118)

with τ2X ≡ τ2 − τX .
The joint wave function at τ2 is therefore:

ˆ̄ψ2

(
~p′,~k

)
= 4

√√√√ 1

π3det
(

ˆ̄Σ
)e“−ı(~p′+~k)·~xa− 1

2 δ
~p′· ˆ̄Σ

−1
·δ~p′−ıΩXτ2X−ıΩ0τX

”
(6.119)

with change in momentum:

δ~p′ ≡ ~p′ + ~k − ~pa (6.120)
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and initial and final energies:

Ω0 ≡

(
~p′ + ~k

)2

2m
,ΩX ≡ (~p′)2

2m
+
~k2

2µ
(6.121)

We can see that an integral over τX would tend to subtract out components
where Ω0 6= ΩX , giving us an effective δ function in the SQM energy.

The final wave function is strongly correlated between left and right. The
conservation condition at the vertex means A′, B are each sharing part of the
same initial momentum. They are like Siamese twins – separated at birth but
still connected. This is the source of the mysterious spooky action at a distance
complained of in the initial EPR paper [25].

6.7.3 Emission of a particle in TQM

We take the same basic approach, but now with the coordinate energy/coordinate
time included, and with the conservation condition at the vertex being for four
momentum rather than three momentum.

We write the initial wave function as direct product of time and space parts:
A = ÃĀ.

Â0 (p) = ˆ̃Aa (E) ˆ̄Aa (~p) (6.122)

The three momentum part is the same as in SQM. For the energy part we
have:

ˆ̃Aa (E) ≡ 4

√
1
πσ̂2

t

e
ıEta− (E−Ea)2

2σ̂2
t (6.123)

We take:
ta ≈ τ0 = 0
Ea ≈

√
m2 + ~p2

a

σ̂2
E ≈ σ̂2

x + σ̂2
y + σ̂2

z

(6.124)

We write the entire wave function function as:

Â0 (p) = 4

√√√√ 1

π4det
(
Σ̂
)e−ıpxa− 1

2 δpΣ̂
−1δp (6.125)

with ancillary definitions:

δp ≡ p− pa

Σ̂ ≡


σ̂2
t 0 0 0
0 σ̂2

x 0 0
0 0 σ̂2

y 0
0 0 0 σ̂2

z

 (6.126)

The kernel that carries A from τ0 → τX is:

K
(m)
X (p) = exp (−ıfpτX) = ˆ̃K(m)

X (E) ˆ̄K(m)
X (~p) exp

(
−ım

2
τX

)
(6.127)
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with fp ≡ −E2−~p2+m2

2m and with energy part:

ˆ̃K(m)
X (E) ≡ exp

(
ı
E2

2m
τX

)
(6.128)

So the A wave function at X is:

ÂX (p) = 4

√√√√ 1

π4det
(
Σ̂
) exp

(
−ıp · xa −

1
2
δpΣ̂−1δp− ıfpτX

)
(6.129)

The energy part at A is now:

ˆ̃AX (E) = 4

√
1
πσ̂2

t

exp

(
ıEta −

(E − Ea)
2

2σ̂2
t

+ ı
E2
a

2m
τX

)
(6.130)

The integral over the δ function at X gives:

ψ̂2 (p′, k) = −ıλK̂(m)
2X (p′) K̂(µ)

2X (k) ÂX (p′ + k) (6.131)

Again we are pushing the sum of the final momenta back into the initial
wave function.

Post vertex kernels:

K̂
(m)
2X (p′) = exp (−ıfp′τ2X) , K̂(µ)

2X (k) = exp (−ıfkτ2X) (6.132)

So the wave function at τ2 is:

ψ̂2 (p′, k) = 4

√√√√ 1

π4 det
(
Σ̂
) exp

(
ı (p′ + k)xa −

1
2
δp′Σ̂−1δp′ − ıFXτ2X − ıF0τX

)
(6.133)

with change in four momentum:

δp′ ≡ p′ + k − pa (6.134)

and initial and final clock frequencies:

F0 ≡ −
(E′+w)2−(~p′+~k)2−m2

2m ,

FX ≡ fp′ + fk = − (E′)2−(~p′)2−m2

2m − w2−~k2−µ2

2µ

(6.135)

Per the long, slow approximation, we expect that both F0 and FX will be
small. And an integral over τX would make their difference still smaller. As
noted in the free particle section most of the dependence on clock time will be
carried by the coordinate time part of the wave function.

The parts dependent on the rest masses do not play a critical role, for the
same reasons as in the SQM case.
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The energy part of the joint wave function is:

ˆ̃
ψ2 (E′, w) = 4

√
1
πσ̂2

t

e
ı(E′+w)ta− (E′+w−Ea)2

2σ̂2
t

+ı

„
(E′)2

2m + w2
2m

«
τ2X+ı

(E′+w)2

2m τX

(6.136)
The left and right halves are again strongly correlated – now in energy/time

as well as in three-momentum/space – even though with increasing clock time
they are separated by greater and greater distances. Again, they are like Siamese
twins separated at birth but still connected, now across time as well as space.

6.7.4 Discussion of particle emission

With TQM, to the correlations in three-momentum complained of in the initial
EPR paper we add correlations in energy. These provide raw material for a
Bell’s theorem “in time”.

Presumably Einstein would still be unhappy about the “spooky action at a
distance”, but perhaps he would be partly consoled by the inclusion of time on
the same basis as space.

6.8 Absorption of a particle

What does the absorption of a particle look like in TQM?

0
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2

p

p

k
A0 p( )

A2 p( )

B0 k( )

X

KX
μ( ) k( )

K2 X
m( ) p( )

KX
m( ) p( )

Figure 6.8: An A particle absorbs a B particle

6.8.1 Overview

We look at the case where an A absorbs a B. The initial particle expectations
and dispersions are given; we wish to compute the outgoing particle’s expecta-
tion and dispersion.
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As with emission, we expect that this absorption diagram will be part of
a larger calculation. We will assume for convenience here that the momentum
space expectations of the incoming particle are on-shell, but that need not be
true in general.

We start with two Gaussian test functions A,B. These are centered on
momenta pa, kb with initial expectations for position xa, xb. We define p′a ≡
pa + kb.

For simplicity we take the A particle as coming in from the left and the B
as coming in from the right. Without loss of generality we can assume both are
coming in along the x-axis with relative offset b along the y axis. With a slight
loss of generality we will assume b→ 0.

We have starting velocities, v > 0, u > 0:

~pa = mvx̂,~kb = −µux̂ (6.137)

and starting points on left and right:

~xa = −lx̂, ~xb = dx̂ (6.138)

In first order perturbation theory we would compute the final amplitude by
integrating over all intermediate clock times τ1. But as with emission we focus
on the interaction at a specific clock time τX . Since we have a natural clock
time to work with – the time defined by the intersection of the classical paths
of A,B – we will use that.

This is defined by:
x = −l + vτX = d− uτX (6.139)

giving crossing time τX :

τX =
d+ l

v + u
(6.140)

and crossing position xX :

xX =
vd− ul

v + u
(6.141)

Trivially yX = zX = 0.
We are left with one integral to do, a convolution of the initial momenta:

Â2 (p′) = −ıλ
∫
dkK̂

(m)
2X (p′) ÂX (p′ − k) ˆ̄BX (k) (6.142)

We will first treat the SQM case, then TQM.

6.8.2 Absorption of a particle in SQM

Initial wave functions The initial particles are given by:

ˆ̄A0 (~p) = 4

√
1

π3det
“

ˆ̄Σ
”e−ı~p·~xa− 1

2 ~p·
ˆ̄Σ
−1

·~p

ˆ̄B0

(
~k
)

= 4

√
1

π3 det
“

ˆ̄S
”e−ı~k·~xb− 1

2
~k· ˆ̄S

−1
·~k

(6.143)
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with expectations and dispersions:

~p ≡ ~p− ~pa,~k ≡ ~k − ~kb

ˆ̄Σ ≡

 σ̂2
x 0 0
0 σ̂2

x 0
0 0 σ̂2

x

 , ˆ̄S ≡

 ŝ2x 0 0
0 ŝ2y 0
0 0 ŝ2z

 (6.144)

In momentum space the kernels from start to X are:

ˆ̄K(m)
X (~p) = exp

(
−ı ~p

2

2m
τX

)
, ˆ̄K(µ)

X = exp

(
−ı
~k2

2µ
τX

)
(6.145)

The wave functions at X are therefore:

ˆ̄AX (~p) = 4

√
1

π3det
“

ˆ̄Σ
”e−ı~p·~xa− 1

2 ~p·
ˆ̄Σ
−1

·~p−ı ~p2

2m τX

ˆ̄BX
(
~k
)

= 4

√
1

π3 det
“

ˆ̄S
”e−ı~k·~xb− 1

2
~k· ˆ̄S

−1
·~k−ı~k2

2µ τX

(6.146)

Interaction The final wave function at τ2 will be given by a convolution of
all possible incoming momenta:

ˆ̄A2 (~p′) = −ıλK̂(m)
2X (~p′)

∫
d~kÂX

(
~p′ − ~k

)
B̂X

(
~k
)

(6.147)

We focus on the convolution integral over x:

Î
(x)
X (p′x) ≡

∫
dkxÂX (p′x − kx) B̂X (kx) (6.148)

Since this is the integral of a Gaussian it can be solved exactly. However
we will get more insight by shifting to the position basis. The convolution in
momentum space becomes a multiplication in position space:

I
(x)
X (x) =

√
2πAX (x)BX (x) (6.149)

The Gaussian test functions for A and B are centered on their corresponding
classical paths.

The close relationship of classical and quantum trajectories is an attractive
feature of the approach here; we can think of a particle as traveling along a
classical line with quantum fuzz around it. In SQM the fuzz extends out in the
three space dimensions; in TQM in the time dimension as well.

At the crossing time, the coordinate forms for A and B at X are therefore:

AX (x) = F
(x)
X e

ıp(a)
x (x−xa)− 1

2σ2
xf

(x)
X

(x−xX)2−ı p
(a)2
x
2m τX

BX (x) = G
(x)
X e

ık(b)
x (x−xb)− 1

2s2xg
(x)
X

(x−xX)2−ı k
(b)2
x
2µ τX

(6.150)
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The dispersion factors f, g and normalization factors F,G are spelled out in
A.4.

We work along the same lines as for the single slit above (subsection 5.1.2).
We define effective crossing times τ∗ and dispersions σ∗2x via:

1
σ2
x + ı τX

m

+
1

s2x + ı τX

µ

=
1

σ∗2x + ı τ
∗

m

(6.151)

The effect of the interaction is to change the shape of the A wave function
so that it looks as if it had started at time τX − τ∗ with dispersion σ∗2x .

We clear the denominators:(
σ2
x + s2x

)
σ∗2x +ı

(
τX
m

+
τX
µ

)
σ∗2x −

(
τX
m

+
τX
µ

)
τ∗

m
+ı
(
σ2
x + s2x

) τ∗
m

=
(
σ2
xs

2
x −

τ2
X

mµ

)
+ı
(
σ2
x

τX
µ

+ s2x
τX
m

)
(6.152)

We equate the real and imaginary parts:(
s2x + σ2

x

)
σ∗2t −

(
τX

m + τX

µ

)
τ∗

m = σ2
xs

2
x −

τ2
X

mµ(
τX

m + τX

µ

)
σ∗2x +

(
σ2
x + s2x

)
τ∗

m = σ2
x
τX

µ + s2x
τX

m

(6.153)

We have a two by two matrix equation for σ∗2x , τ
∗, which we invert and apply

to the right hand side:(
σ∗2x
τ∗

m

)
=

1
D

(
s2x + σ2

x
τX

m + τX

µ

−
(
τX

m + τX

µ

)
s2x + σ2

x

)(
σ2
xs

2
x −

τ2
X

mµ

σ2
x
τX

µ + s2x
τX

m

)
(6.154)

with determinant D:

D =
(
σ2
x + s2x

)2
+
(
τX
m

+
τX
µ

)2

(6.155)

The resulting expressions for the rescaling constants are relatively complex;
the shape of A′ is a marriage of the shapes of A,B:

σ∗2x = 1
D

((
s2x + σ2

x

) (
σ2
xs

2
x −

τ2
X

mµ

)
+
(
τX

m + τX

µ

)(
σ2
x
τX

µ + s2x
τX

m

))
τ∗

m = 1
D

(
−
(
τX

m + τX

µ

)(
σ2
xs

2
x −

τ2
X

mµ

)
+
(
s2x + σ2

x

) (
σ2
x
τX

µ + s2x
τX

m

)) (6.156)

The resulting wave function is:

I
(x)
X (x) = N

(x)
X ϕ

(∗)
X (x) (6.157)

with:

ϕ
(∗)
X (x) = F (x)∗

τ e
ıp

(a′)
x (x−xX)− 1

2σ∗2x f
∗(x)
X

(x−xX)2−ı p
(a′)2
x
2m τX

(6.158)

and an overall constant N (x)
X independent of x. The overall constant will drop

out when we calculate the final expectation and dispersion, so the effective
dispersion and crossing time carry all the physically significant information.

83



Final wave function Since all x dependence is carried by ϕ(∗)
X (x), we have

the Fourier transform by inspection:

Î
(x)
X (p′x) = N

(x)
X ϕ̂

(∗)
X (p′x) (6.159)

with the momentum space form of the starred wave function:

ˆ̄ϕ∗X (p′x) = 4

√
1

πσ̂∗2X
e
−ıp′xxX−

 
p′x−p

(a′)
x

!2

2σ̂∗2
X

−ı ~p′2
2m τX

(6.160)

The other two dimensions work in parallel. Now that we are back in mo-
mentum space we have the resulting wave function at τ2:

ˆ̄A2 (~p′) = −ıλ exp
(
−ı ~p

′2

2m
τ2X

)
N

(x)
X N

(y)
X N

(z)
X

ˆ̄ϕ∗X (~p′) (6.161)

For our purposes the most interesting aspect is the associated uncertainty
in momentum. The overall normalization drops out:

〈(
~p′ − ~p(a

′)
)2
〉

=

∫
d~p′
(
~p′ − ~p(a

′)
)2∣∣ ˆ̄ϕX (~p′)

∣∣2∫
d~p′
∣∣ ˆ̄ϕX (~p′)

∣∣2 (6.162)

The uncertainty in p is defined by the post-interaction wave function. For
the x direction this is:

σ̂∗2X =
1
σ∗2X

(6.163)

We can read off the physically important part of the resulting wave function
from the starred dispersion.

The simplest case is when B is both narrow in space sx � σx and heavy
µ � m. In this case the effective dispersions and start time take the simple
form:

σ∗2x → s2x
τ∗

m → 0
(6.164)

Operationally, if we detect A′ at all, we know to within sx � σx where A was at
τX . But this A′ has momentum p′x with a large effective dispersion σ̂∗x ∼ 1/sx.
The momentum of A′ has become much more uncertain.

So the B functions as a classical gate, with the familiar reciprocal relation-
ship between the position and momentum.

6.8.3 Absorption of a particle in TQM

We work along the same lines to extend the analysis to TQM. The classical
trajectories now include a time component:

t = t0 + γτ (6.165)

84



We will treat the time parts of the wave functions as non-relativistic, γ ≈ 1.
This is consistent with our use of the non-relativistic approximation for the
space parts.

We will assume our initial wave functions are centered on τ0:

t0 = τ0 ⇒ t0 = 0 (6.166)

As a result we have the same intersection point in coordinate time that we
have in clock time:

tX = τX (6.167)

Initial wave functions For the initial wave functions we have A and B as
products of their time and space parts:

Â0 (p) = 4

√
1

πdet(Σ̂)e
−ıpxa− 1

2pΣ̂p = ˆ̃A0 (E) ˆ̄A0 (~p)

B̂0 (k) = 4

√
1

π4 det(Ŝ)e
ıkxb− 1

2kŜ
−1k = ˆ̃B0 (w) ˆ̄B0

(
~k
) (6.168)

with time parts:
ˆ̃A0 (E) = 4

√
1
πσ̂2

t
e
ıEta− (E−Ea)2

2σ̂2
t

ˆ̃B0 (w) = 4

√
1
πŝ2t

e
ıwtb− 1

2ŝ2t
(w−wb)

2 (6.169)

and:

p ≡ p− pa, k ≡ k − kb

Σ̂ ≡


σ̂2
t 0 0 0
0 σ̂2

x 0 0
0 0 σ̂2

y 0
0 0 0 σ̂2

z

 , Ŝ ≡


ŝ2t 0 0 0
0 ŝ2x 0 0
0 0 ŝ2y 0
0 0 0 ŝ2z

 (6.170)

and expectations and dispersions in time/energy:

ta ≈ τ0 = 0, tb ≈ τ0 = 0

Ea ≈
√
m2 + ~p2

a, wb ≈
√
µ2 + ~k2

b

σ̂2
E ≈ σ̂2

x + σ̂2
y + σ̂2

z , ŝ
2
t ≈ ŝ2x + ŝ2y + ŝ2z

(6.171)

The wave functions at X are:

ÂX (p) = 4

√
1

π4det(Σ̂)e
ıpxa− 1

2pΣ̂
−1pe−ıfpτX

B̂X (k) = 4

√
1

π4 det(Ŝ)e
ıkxb− 1

2kŜ
−1k−ıfkτX

(6.172)

Interaction To compute the wave function at τ2 we again convolute the in-
coming wave functions:

Â2 (p′) = −ıλK̂(m)
2X (p′)

∫
dkÂX (p′ − k) B̂X (k) (6.173)
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The coordinate energy part of the integral in momentum space is:

ˆ̃IX (E′) ≡
∫
dw ˆ̃A (E′ − w) ˆ̃B (w) (6.174)

In coordinate time:

ĨX (t) =
√

2πÃX (t) B̃X (t) (6.175)

The wave functions in time are:

ÃX (t) = F
(t)
X e

−ıEat− 1

2σ2
t f

(t)
X

(t−ta−Ea
m τX)2

+ı
E2

a
2m τX

B̃X (t) = G
(t)
X e

−ıwbt− 1

2s2t g
(t)
X

(t−tb−wb
µ τX)2

+ı
w2

b
2µ τX

(6.176)

The quadratic arguments of the Gaussians both reduce to (t− τX)2 in our
non-relativistic approximation.

As before, we define effective crossing times τ∗ and dispersions σ∗2t via:

1
σ2
t − ı τX

m

+
1

s2t − ı τX

µ

=
1

σ∗2t − ı τ
∗

m

(6.177)

Again, effect of the interaction is to change the shape of the A wave function
so that it looks as if it had started at time τX − τ∗ with dispersion σ∗2t .

As before, we clear the denominators, equate the real and imaginary parts,
and invert the two by two matrix equation for σ∗2t , τ

∗ to get:

σ∗2x = 1
D

((
σ2
t + s2t

) (
σ2
t s

2
t −

τ2
X

mµ

)
+
(
τX

m + τX

µ

)(
σ2
t
τX

µ + s2t
τX

m

))
τ∗

m = 1
D

(
−
(
τX

m + τX

µ

)(
σ2
t s

2
t −

τ2
X

mµ

)
+
(
σ2
t + s2t

) (
σ2
t
τX

µ + s2t
τX

m

)) (6.178)

with determinant D:

D =
(
σ2
t + s2t

)2
+
(
τX
m

+
τX
µ

)2

(6.179)

As before we have:
ĨX (t) = ÑX ϕ̃

(∗)
X (t) (6.180)

with starred wave function:

ϕ̃
(∗)
X (t) ≡ F

(t)∗
X e

ıE′
a(t−tX)− 1

2σ∗2t f
∗(t)
X

(t−tX)2−ıE′
a
2

2m τX

(6.181)

Since all t dependence is carried by ϕ̃(∗)
X (t), we have the Fourier transform

by inspection:
Î
(x)
X (p′x) = ÑX ˆ̃ϕ(∗)

X (E′) (6.182)
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with the momentum space form of the starred wave function:

ˆ̃ϕ(∗)
X (E′) = 4

√
1

πσ̂
(t)∗2
X

e
ıE′xX− (E′−E′

a)2

2σ̂
(t)∗2
X

+ı
(E′)2

2m τX

(6.183)

and therefore the final wave function:

Â2 (p′) = ˆ̃A2 (E′) ˆ̄A2 (~p′)
ˆ̃A2 (E′) = exp

(
ıE

′2

2m τ2X

)
N

(t)
X

ˆ̃ϕX (E′)
(6.184)

Uncertainty in time For our purposes the most interesting aspect is the
associated uncertainty in energy. The overall normalization drops out:

〈(
E′ − E(a′)

)2
〉

=

∫
dE′

(
E − E(a′)

)2∣∣∣ ˆ̃ϕX (E)
∣∣∣2∫

dE′
∣∣∣ ˆ̃ϕX (E)

∣∣∣2 (6.185)

The post-interaction dispersion in E is given by the post-interaction disper-
sion in t:

σ∗2E ≡ σ̂∗2t =
1
σ∗2t

(6.186)

and the uncertainty in E by the usual formula:

∆E =

√
σ∗2E
2

(6.187)

With the dispersion in coordinate time we can calculate the dispersion in
clock time at a detector using the formulas above in subsection 4.3.

The increase in complexity from using a quantum particle as the gate, rather
than a classical camera shutter, is significant.

The simplest case is when B is both narrow in time sx � σx and heavy
µ� m. In this case the effective dispersions and start time take the form:

σ∗2t → s2t
τ∗

m → 0
(6.188)

In this case we can apply the same formulae as with the single slit in time;
getting the same arbitrarily large increase in the dispersion in time-of-arrival.

In the more general case, a certain amount of ingenuity may be required to
tease out the effects of the increased dispersion in time.

6.8.4 Distinguishing between uncertainty in space and in time

And this point takes us to a general problem in looking for uncertainty in time
with time-of-arrival measurements. If we use time-of-arrival measurements we
are measuring dispersion in time, yes, but we are also measuring dispersion in
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momentum along the axis of flight. Since we expect the initial dispersions in
time to be of order of those in space, it may be difficult to prove there was no
dispersion in time. Perhaps it was lost in the error bars?

The basic problem is the time-of-arrival measurement is being used to mea-
sure two different things: one measurement cannot serve two masters.

One way to separate the two measurements would be to run the post-
interaction particle through a magnetic field. Let’s say the particle will be
bent to the right by the magnetic field. The y position will serve as usual as a
measurement of velocity. But if at each y position we also record the time-of-
arrival, the time-of-arrival should now serve as a measurement of dispersion in
coordinate time.

If we graph the clicks on a y, τ grid, the faster particles will hit earlier in
time and more to the left. In SQM we would expect to see a relatively narrow
trace from small y, τ to large y, τ . In TQM we would expect to see the same
trace on average, but significantly broader in τ at each y.

The SQM trace will look more like the thin scar left by a rapier; the TQM
trace more like the thicker scar left by a saber.

6.9 Exchange of a particle

What does the exchange of a particle look like in TQM?
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Figure 6.9: An A particle exchanges a B particle with a C particle

6.9.1 Overview

We look at the case where an A and a C exchange a B. The initial particle
expectations and dispersions are given; we wish to compute the outgoing particle
expectation and dispersions. We have two cases: the A emits a B which is then
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absorbed by C and the C emits a B which is then absorbed by the A. We will
call these the left and right cases.

As with emission and absorption, we expect that this exchange diagram will
be part of a larger calculation. We will assume for convenience here that the
momentum space expectations of the incoming particles are on-shell, but that
need not be true in general. Note that this is the first time it is possible for both
incoming and outgoing particles to have their momentum space expectations on-
shell; the exchanged particle will still remain in general off-shell.

To lowest order in perturbation expansion we have convolutions over the two
intermediate clock times τ1, τ2:

ψ̂
(left)
3 (p′, q′) = −λΛ

τ3∫
0

dτ2K̂
(M)
32 (q′)

∫
d4qd4kĈ2 (q)

τ2∫
0

dτ1
∫
d4pK̂

(µ)
21 (k) Â1 (p)

ψ̂
(right)
3 (p′, q′) = −λΛ

τ3∫
0

dτ2K̂
(m)
32 (p′)

∫
d4pd4kÂ2 (p)

τ2∫
0

dτ1
∫
d4qK̂

(µ)
21 (k) Ĉ1 (q)

(6.189)
In TQM, the two initial wave functions are each defined by four expecta-

tions in position, four in momentum, and four dispersions in either momentum
or position space – twenty-four variables total. We have twelve integrals in
momentum (or position), over the two initial particles A,C and the exchange
particle B. And the two convolutions in clock time. With appropriately pro-
grammed mathematics software this is hardly a problem. But it is easy to lose
sight of the physics in the course of doing the calculations.

To keep focus we will do as we have in the two previous subsections and fix
the clock times of the vertexes as τX , τY . Different values of τX , τY will let us
look at specific cases. The properties of the exchanged particle are key; we will
focus on these.

Classical trajectories We will take the same starting wave functions as with
absorption, but with B → C. A has expectations xa, p(a), dispersions σ̂(a); C
expectations xc, q(c), dispersions ŝ(a).

We assume we have A coming in from the left; C from the right; both along
the x axis. Again we assume the collision is head-on with no offset along the ŷ
or ẑ axes.

We start by fixing τX , τY . Taking the left case first, we have for A and C:

x
(left)
X = xa + p(a)

x

m τX

x
(left)
Y = xc + q(c)

x

M τY
(6.190)

And for the exchange particle:

x
(left)
Y = x

(left)
X +

k
(b)
x

µ
(τY − τX) (6.191)

With δx(left) ≡ x
(left)
Y − x

(left)
X , δτ ≡ τY − τX we have the expectation of
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the momentum of the exchange particle:

k(left)
x = µ

δx(left)

δτ
(6.192)

The momentum of B is exactly what it needs to get from X → Y in time
for its rendezvous with C. From conservation of momentum at each vertex we
have for the expectations of the final momenta:

〈p′x〉 = p(a)
x − k(left)

x , 〈q′x〉 = q(c)x + k(left)
x (6.193)

With the initial conditions specified and τX , τY as well, the final expectations
are immediate, with the final dispersions to be computed.

To get the right hand case we interchange the roles A↔ C:

x
(right)
X = xc + q(c)

x

M τY

x
(right)
Y = xa + p(a)

x

m τX
(6.194)

and:

k(right)
x = µ

δx(right)

δτ
(6.195)

giving final expectations:

〈p′x〉 = p(a)
x + k(right)

x , 〈q′x〉 = q(c)x − k(right)
x (6.196)

6.9.2 Exchange particle

We can write the wave function for the exchange particle in SQM as:

ˆ̄BY X
(
~k
)

= 4

√
1

π ˆ̄Σ
(X)

e
−ı~k·~xX− 1

2 (~k−~kX)· 1
ˆ̄Σ(X) ·(~k−~kX)−ı~k2

2µ δτ (6.197)

and in TQM in covariant notation:

B̂Y X (k) = 4

√
1

πΣ̂(X) e
ıkxX− 1

2 (k−kX) 1
Σ(X) (k−kX)−ıfkδτ

fk ≡ −k2−µ2

2µ

(6.198)

and as a product of time and space parts:

B̂Y X (k) = ˆ̃BY X (w) ˆ̄BY X
(
~k
)

exp
(
ı
µ

2
δτ
)

(6.199)

ˆ̃BY X (w) = 4

√
1

π ˆ̃σ
(X)

e
ıwtX− 1

2
(w−wX)2

2ˆ̃σ(X) +ıw2
2µ δτ (6.200)

Taking the left side for definiteness, the wave function of the intermediate
state is properly the direct product of the highly correlated wave functions of
A,B with the (as yet) uncorrelated wave function of the C particle. After B
encounters C at Y , B is gone and now A and C are highly correlated.

We have proceeded a bit formally, specifying τX , τY and then deriving the
properties of the exchange particle from these. A more physical approach might
be to fix the momentum of the exchange particle and then integrate over all
values of τX and τY consistent with that.
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6.9.3 Discussion

How we develop the exchange depends on what we are interested in:

1. If we are interested in the use of one particle as a measurement of the
other, then we already have what we need: B inherits its dispersions from
its parent. If its parent was narrow in time/space, then it will be as well
and act as a de facto gate with respect to the other particle.

2. If we are interested in subtler effects of dispersion in time, we can look for
forces of anticipation and regret: if wave functions are extended in time
as they are in space, then in a collision they will start to interact earlier,
cease interacting later than would otherwise be the case.

3. If we are interested in doing a Bell’s theorem correlation in time, then we
need to track the correlations through. Because momentum is conserved at
each vertex, the outgoing particles will be highly correlated in momentum
space.

4. If we are interested in symmetry properties in the time direction, then we
can:

(a) Take our C as an A,
(b) Start with wave functions that are symmetric under particle exchange

but which nevertheless have a component which is anti-symmetric in
time (as the wide and narrow wave function in section 6.3),

(c) Look for unexpected anti-symmetries in space.

5. If we are interested in the bound case, we can look at the exchange particle
as creating a Yukawa force in time. The exp (−ıfkτ) factor will tend to
keep the exchange particle on-shell for larger values of δτ . In coordinate
space this will tend to make the effective potential look like a Liénard–
Wiechert potential.

6.10 Loop correction to the mass

How do we calculate loop diagrams in TQM?

6.10.1 Loop correction in SQM

In the ABC model there is an amplitude λ for an A to emit a B then absorb
it. As is well known, in quantum field theory this can be made to look like a
correction to the mass, with the effect of taking a bare mass to a corrected mass:
m2

0 → m2 = m2
0 + δm2. Unfortunately the integral for this δm2 correction is

divergent. If the A particle has four-momentum p and emits a B with four-
momentum k, to compute the amplitude associated with the loop we will need
to integrate over all possible values of the intermediate k:

δm2 ∼
∫
d4k

ı

(p− k)2 −m2

ı

k2 − µ2
(6.201)
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Figure 6.10: Loop correction to the mass

This is logarithmically divergent at large k:

δm2 ∼
∫
d4k

k4
(6.202)

As a result all such integrals have to be regularized: a convergence factor has
to be inserted which acts as an effective cutoff, throwing out the high energy
part of the loop in a way that does not distort results at lower energies.

To do this we take advantage of the general principle that all physical mea-
surements involve an implicit comparison between two measurements. If we
are going to use the mass of a particle as a value in one calculation we must
first have found that mass in another. An absolute, standalone measurement
is not possible even in principle. All measurements have to be renormalized–
normalized by comparison to another – to get physically meaningful numbers.

In quantum field theory renormalization – needed physically – is also used
to regularize, to contain and control the infinities. If we make the necessary
comparison in the right way, we can use it to subtract off the infinities.

It’s like weighing a mouse by first weighing an aircraft carrier without the
mouse, weighing the aircraft carrier with the mouse on board, and then sub-
tracting out the weight of the aircraft carrier to get the weight of the mouse.

There is no guarantee that this will work. What if the cutoff function/procedure
being used on both sides of the comparison has unintended side-effects at lower
energies? But in spite of the obvious risk the procedure works — and brilliantly
– producing some of the most accurate predictions in the whole of physics.

6.10.2 Loop correction in TQM

With an extra dimension to integrate over we might expect that the correspond-
ing loop integrals in TQM would not only be divergent, but perhaps even be
divergent in a way which cannot be contained by renormalization.
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We will show that in fact the loop integrals in TQM are not divergent. The
combination of finite initial dispersion in time with entanglement in time keep
the integrals convergent. We will work through a simple example, computing
the familiar mass correction loop, first as a function of clock time, then as a
function of clock frequency.

Loop integral for fixed clock time We apply the loop integral to a initial
Gaussian test function. In momentum space:

Lτ (p) =
∫
d4kK̂(m)

τ (p− k) K̂(µ)
τ (k) ϕ̂0 (p) (6.203)

with initial Gaussian test function:

ϕ̂0 (p) = 4

√√√√ 1

π4det
(
Σ̂
) exp

(
− (p− p0)

2

2Σ

)
(6.204)

The corresponding loop integral in coordinate space is:

Lτ (x1) = 4π2

∫
d4x0K

(m)
τ (x1;x0)K(µ)

τ (x1;x0)ϕ0 (x0) (6.205)

The kernels in coordinate space are:

K
(m)
τ (x1;x0) = −ı m2

4π2τ2 exp
(
− ım

2τ (x1 − x0)
2 − ım2 τ

)
K

(µ)
τ (x1;x0) = −ı µ2

4π2τ2 exp
(
− ıµ

2τ (x1 − x0)
2 − ıµ2 τ

) (6.206)

The product equals a single coordinate space kernel:

K(M)
τ (x1;x0) = −ı M

2

4π2τ2
exp

(
−ıM

2τ
(x1 − x0)

2 − ı
M

2
τ

)
(6.207)

with a modified mass M ≡ m+ µ and a prefactor.
So the loop integral in coordinate space is now:

Lτ (x1) = −ı m
2µ2

τ2M2

∫
d4x0K

(M)
τ (x1;x0)ϕ0 (x0) (6.208)

The presence of the Gaussian test function on the right means we get by
inspection:

Lτ (x1) = −ı m
2µ2

τ2M2
ϕ(M)
τ (x1) (6.209)

We have a correction that shows a spread in time, but at the slightly slower
rate associated with the slightly larger mass M . Further the correction is much
greater at shorter clock times:

Lτ (p1) = −ım
2µ2

τ2M2

∫
d4p0K̂

(M)
τ (p1; p0) ϕ̂0 (p0)

K̂
(M)
τ (p1; p0) = exp

(
ı
p20−m

2

2m τ
)
δ4 (p1 − p0)

(6.210)
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So the loop correction for fixed clock time is:

Lτ (p) = −ı m
2µ2

M2τ2
exp

(
ı
p2 −M2

2M
τ

)
ϕ̂0 (p) (6.211)

At this point the value of the loop correction at a particular value of p
is independent of the specific shape of the incoming wave function. We are
therefore free to drop the initial wave function from the analysis:

Lτ (p) = −ı m
2µ2

M2τ2
exp

(
ı
p2 −M2

2M
τ

)
(6.212)

Fourier transform of the loop integral over clock time Now that we
have the loop integral for a specific value of the clock time we can take the
Fourier transform with respect to τ :

L̂ω (p) = −ı 1√
2π

∞∫
−∞

dτ
m2µ2

M2τ2
eı(ω−Fp)τ (6.213)

We define Fp ≡ −p2−M2

2M . For small µ, Fp ≈ fp. We have the value of the
Fourier transform (with conventions per Mathematica):

FT
[
exp (−ıFpτ)

τ2

]
= −

√
π

2
|ω − Fp| (6.214)

or in our case:

L̂ω (p) = ı
m2µ2

M2

√
π

2
|ω − Fp| (6.215)

The value of the loop integral is therefore finite, without need for regular-
ization or the introduction of cutoffs or other artificial approaches.

We still need to renormalize. But we have separated the problems associated
with renormalization from those associated with regularization.

As we have seen throughout, TQM implies the initial wave functions:

1. have finite dispersion in time (as well as space)

2. are entangled with the loop integration variables

This in turn means that each loop integration picks up a Gaussian factor that
guarantees its convergence – a Gaussian easily dominates merely polynomial
divergences.

The combination of finite initial dispersion and entanglement therefore forces
convergence.

Note this approach will not work in SQM. In SQM there is by assumption
no finite initial dispersion in time. And even if there were, each step is cut off
from the previous since there is no entanglement in time.
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We have only looked at a toy case. But the principles established here
apply generally. As noted, the combination of Morlet wavelet analysis and
entanglement in time mean that the integrals encountered in a diagram are
self-regularized: the Gaussian functions which are passed through a series of
integrals easily dominate any polynomial divergence.

An implication is that it is the assumption that quantum mechanics does
not apply along the time dimension that is responsible for the ultraviolet di-
vergences. The familiar divergences are a side-effect of not pushing the ideas of
quantum mechanics and special relativity hard enough, of our failure to treat
time and space symmetrically in quantum mechanics.

6.11 Discussion of the multiple particle case

We have established that we can extend TQM to include the multiple particle
case.

TQM is conceptually simpler than SQM: time and space are treated on an
equal footing and there are no ultraviolet divergences. But it is calculationally
more complex: we have coordinate time to consider and we are required to
use Gaussian test functions rather than plane waves as the fundamental unit of
analysis.

We have examined the basic parts of a Feynman diagram: free propagators;
the emission, absorption, and exchange of a particle; and simple loop diagrams.
We are therefore able to work out – in principle at least – the results for any
diagram in a perturbation expansion. And therefore to compare TQM to SQM
in any experiment which can be described by such expansions.

To falsify TQM we need experiments that work at short times and with
individual wave packets. Long times and averages over wave packets kill the
effects associated with dispersion in time.

The most decisive such experiments are likely to be ones that emphasize the
effects of the time/energy uncertainty principle.

Additional effects include:

1. anti-symmetry in time,

2. forces of anticipation and regret,

3. interference and entanglement in time,

4. adjustments to the usual loop corrections.

To be sure, these additional effects likely to be both subtle and small. Therefore
they may not be that useful for falsifiability, our primary target in this work.
But they are potentially interesting in their own right.

We observe that the results here should be in common across the relativistic
dynamics program; these are all consequences of dispersion in time, which is
found across the relativistic dynamics program.
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7 Discussion

“It is difficult to see what one does not expect to see.” – William
Feller [30]

We have explored the possibility that the quantum wave function should be
extended in time:

ψ (~x) → ψ (t, ~x) (7.1)

We have argued that this idea can be developed in a way that is self-consistent,
consistent with existing experimental and observational work, and – most im-
portantly – falsifiable.

7.1 Falsifiability

With the single slit in time we have a decisive test of temporal quantum me-
chanics. In SQM, the narrower the slit, the less the dispersion in subsequent
time-of-arrival measurements. In TQM, the narrower the slit, the greater the
subsequent dispersion in subsequent time-of-arrival measurements. In principle,
the difference may be made arbitrarily great.

To get to this point we had to develop the rules for calculation in a way that
is unambiguously falsifiable. To do this:

1. We took path integrals as the defining representation. This made the
extension from three to four dimensions unambiguous.

2. We used Morlet wavelet analysis rather than Fourier analysis to define
the initial wave functions. This let us avoid the use of unphysical wave
functions and made achieving convergence and normalization of the path
integrals possible.

3. We distinguished carefully between “clock time” and “coordinate time”.

As a result, once we applied the requirement that TQM match SQM in the
appropriate limit, we were left with no free parameters.

There are other ways to extend quantum mechanics to include time. We have
started with path integrals; one could start with a Hamiltonian approach, see
for instance Yau [118]. We have focused on the extension of the wave function
along coordinate time; at longer clock times the effects of differences in the
handling of the clock time/evolution parameter may become significant.

We have therefore been careful to focus on dimensional and symmetry argu-
ments, which give first order predictions which are independent of the specifics
of whatever method we might use:

• The initial dispersion in time is fixed by symmetry between time and space
and the principle of maximum entropy.

• The evolution of the wave functions is fixed by the long, slow approxima-
tion. This allows for give, but only over times of picoseconds, glacial by
the standards of TQM.
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• We could choose Alice’s frame or Bob’s to do the analysis, but the cor-
rections due to this are of second order. Further, the corrections can be
eliminated entirely by selecting “the rest frame of the vacuum” as the
defining frame for TQM.

The predictions of TQM are therefore falsifiable to first order.

7.2 Experimental effects

We have discussed two primary effects:

1. generally increased dispersion in time

2. and the time/energy uncertainty principle.

These effects should be present in any experimental setup in which the sources
vary in time and the detectors are time-sensitive.

Additionally we can look for:

• Shadowing in time – self-interference by detectors and sources.

• Interference, correlations, and entanglement in time. Consider for instance
a Bell’s theorem in time: particles that have interacted in the past, as in
EPR experiments, will be entangled in time as well as space.

• Forces of anticipation and regret. As the paths in TQM advance into the
future they will encounter potentials earlier (anticipation) than in SQM.
And as they dive back into the past they will continue to interact with
potentials later (regret) than is the case in SQM.

• Anti-symmetry in time. Wave functions are free to satisfy their symmetry
requirements using the time dimension as well as the three space dimen-
sions.

• Small – probably quite small – corrections to the usual loop integral cor-
rections.

In general, any quantum effect seen in space is likely have an “in time” variation.
TQM is to SQM with respect to time as SQM is to classical mechanics with
respect to space.

Reviews of foundational experiments in quantum mechanics (for example
Lamoreaux [70], Ghose [42], and Auletta [9]) provide a rich source of candidate
experiments: the single and double slit as well as many other foundational ex-
periments have an “in time” variant, typically with time and a space dimension
flipped.

The experiments are likely to be difficult. The attosecond times here are at
the edge of the detectible. The investigation here was partly inspired by Lind-
ner’s “Attosecond Double-Slit Experiment” [73]. But the times there, 500as,
are far too long for us. More recent work has reached shorter and shorter times:
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12 attoseconds in Koke, Sebastian, and Grebing [69] and as noted the extraor-
dinary sub-attosecond times in Ossiander [88]. Further while the fundamental
scale is defined by the time taken by light to cross an atom, in the case of Ry-
dberg atom the width of an atom in space may be made almost arbitrarily big.
(We are indebted to Matt Riesen for this suggestion.) Therefore the effects of
dispersion in time should now be (barely) within experimental range.

7.3 Further extensions

We have provided only a basic toolkit for TQM.
As TQM falls within the relativistic dynamics program (per subsection 3.6),

the existing literature in this area is in general applicable. We get TQM from ap-
proaches to relativistic dynamics by assuming that the dependence on clock time
is negligible. When this is reasonable, we can use the existing relativistic dy-
namics literature to get TQM specific calculations by taking the sub-picosecond
limit (per subsection 3.4). And we can go the other way: use TQM to get short
clock time approximations to other work in relativistic dynamics.

Areas for further investigation include:

1. Generalizing the treatment of spinless massive bosons to include photons
and fermions. Extension to the Standard Model.

2. Derivation of the bound state wave functions [6, 7, 27].

3. More detailed treatment of scattering experiments [51, 72].

4. Exact treatment of the single slit in time, including paths that wander
back and forth through the slit [97].

5. More detailed treatment of the double slit in time and of diffraction in
time [52, 53].

6. Entanglement in time [53].

7. Careful treatment of measurements, including paths that overshoot, un-
dershoot, and loop around the detector.

8. Decoherence in time.

9. Infrared divergences. From the point of view of TQM, these may be the
flip side of the ultraviolet divergences, suppressed in a similar way.

10. More detailed treatment of the ultraviolet divergences.

11. Examination of the spin-statistics connection: the T in the CPT theorem
must come under grave suspicion.

12. Statistical mechanics. Any statistical ensemble should include fluctuations
in time [27, 54, 57].

13. More detailed treatment of the choice of frame.
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14. Quantum gravity. Since TQM is by construction highly symmetric be-
tween time and space and free of the ultraviolet divergences, it may be
a useful starting point for attacks on the problem of quantum gravity
[27, 56].

7.4 Five requirements

In their delightfully titled How to Think about Weird Things [98] the philoso-
phers Schick and Vaughn lay out five requirements that a hypothesis such as
TQM should satisfy:

1. Testability – are there experimental tests? ideally: is the hypothesis
falsifiable? TQM has no free parameters; it can therefore be falsified
by any experiment at appropriate scale looking at time varying quantum
phenomena.

2. Fruitfulness – does the hypothesis suggest new lines of research, new phe-
nomena to explore? All time-varying quantum phenomena offers targets
for investigation. The list of experimental effects given above is doubtless
far from exhaustive.

3. Scope – how widespread are the phenomena? TQM applies to all time-
varying quantum phenomena.

4. Simplicity – does it make the fewest possible assumptions? TQM elim-
inates the assumption that time and space should be treated differently
in quantum mechanics. It also eliminates the ultraviolet divergences and
the consequent need to regularize the loop integrals in field theories (as
QED).

5. Conservatism – is it consistent with what is known? TQM matches
SQM in the long time (picosecond) limit.

7.5 No null experiments

Meeting the Schick and Vaughn requirements is not enough to establish that
TQM is true, only that it may be worth investigating experimentally.

Now suppose that one or more of the proposed experiments is done and
conclusively demonstrates that TQM is false. That would in turn raise some
interesting questions:

1. Is there a frame in which TQM is maximally (or minimally) falsified? That
would be a preferred frame, anathema to relativity.

2. Is TQM equally false in all frames? if it is equally false in all frames, how
do we reconcile the disparate wave functions of Alice and Bob?

99



As TQM is a straight-forward extrapolation of quantum mechanics and special
relativity, experiments that falsify TQM are likely to require modification of our
understanding of either quantum mechanics or special relativity or both.

Therefore it would appear that there are no null experiments.
This concludes the argument for making an experimental investigation of

TQM.
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A Conventions

We use natural units h̄ = c = 1.
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When summing over three dimensions we use i, j, k. We use ı sans dot for
the square root of -1; i with dot for the index variable. When summing over
four dimensions we use h for the coordinate time index so such sums run over
h, i, j, k.

We define the relativistic time dilation factor γ ≡ E
m .

We use m as the rest mass. We make no use of a relativistic mass, i.e. γm.
Here the mass m is always the rest mass.

A.1 Clock time

We use τ for clock time. The use of the Greek letter τ for clock time is meant to
suggest that this is a “classical” time. We use f for its complementary variable,
clock frequency:

f (op) ≡ ı
∂

∂τ
(A.1)

The clock time τ will usually be found at the bottom right of any symbol it
is indexing:

ϕτ ,Kτ (A.2)

The clock time is in its turn frequently indexed: τ0, τ1, τ2, . . .
As a result, deeply nested subscripts are an occasional hazard of this analysis.

To reduce the nesting level we use obvious shortenings, i.e.:

ϕτ1 (x1) → ϕ1 (x1) → ϕ1 (A.3)

Kτ1τ0 (x1;x0) → K10 (x1;x0) → K1 (x1;x0) → K1 (A.4)

And we represent differences in clock time by combining indexes:

τ21 ≡ τ2 − τ1 (A.5)

A.2 Coordinate time and space

We use E, ~p for the momentum variables complementary to coordinate time t
and space ~x:

E(op) ≡ ı ∂∂t
~p(op) ≡ −ı∇ (A.6)

When there is a natural split into coordinate time and space parts we use a
tilde to mark the time part, an overbar to mark the space part. For example:

ψ (t, ~x) = ψ̃τ (t) ψ̄τ (~x) (A.7)

This is to reinforce the idea that in this analysis the three dimensional part
is the average (hence overbar), while the coordinate time part contributes a
bit of quantum fuzziness (hence tilde) on top of that. With that said, we will
sometimes omit the overbar and the tilde when they are obvious from context:

ϕ̃τ (t) ϕ̄τ (~x) → ϕτ (t)ϕτ (~x) (A.8)

101



We use an overdot to indicate the partial derivative with respect to labora-
tory time:

ġτ (t, ~x) ≡ ∂gτ (t, ~x)
∂τ

(A.9)

A.3 Fourier transforms

We use a caret to indicate that a function or variable is being taken in momen-
tum space. To keep the Fourier transform itself covariant we use opposite signs
for the coordinate time and space parts:

ĝ (E, ~p) = 1√
2π

4

∞∫
−∞

dtd~xeıEt−ı~p·~xg (t, ~x)

g (t, ~x) = 1√
2π

4

∞∫
−∞

dEd~pe−ıEt+ı~p·~xĝ (E, ~p)
(A.10)

For plane waves:

φp (x) = φ̃ (t) φ̄ (~x) = 1√
2π

exp (−ıEt) 1√
2π

3 exp (ı~p · ~x)

φ̂x (p) = ˆ̃
φ (E) ˆ̄φ (~p) = 1√

2π
exp (ıEt) 1√

2π
3 exp (−ı~p · ~x)

(A.11)

To shorten the expressions we use:

x ≡ (t, ~x) = (t, x, y, z) (A.12)

The difference between x the four vector and x the first space coordinate
should be clear from context. In momentum space we use:

p ≡ (E, ~p) = (E, px, py, pz) (A.13)

We have similar rules for clock time τ and its complementary energy f :

ĝf = 1√
2π

∞∫
−∞

dτeıfτgτ

gτ = 1√
2π

∞∫
−∞

dfe−ıfτ ĝf

(A.14)

With these conventions when a Fourier transform is given by a convolution:

ĥ (p) =
∫
dkf̂ (p− k) ĝ (k) (A.15)

the function in coordinate space is given by:

h (x) =
√

2πf (x) g (x) (A.16)

When it is obvious that a symbol represents a Fourier transform we may
drop the caret:

ϕ̂ (p) → ϕ (p) (A.17)
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A.4 Gaussian test functions

As Gaussian test functions play a critical role in this investigation it is useful
to have a consistent notation with which to describe them.

In general we define a Gaussian test function as a normalized Gaussian func-
tion. It may be in position or momentum space. It is defined by its expectations
for position and momentum and by its dispersion in either position or momen-
tum. The most important single example here is the Gaussian test function
that describes the time part of the wave function of a free particle:

ϕ̃τ (t) = F (t)
τ e

−ıE0t−ı
E2

0
2m τ− 1

2σ2
t f

(t)
τ

(t−t0−E0
m τ)2

(A.18)

with dispersion:
σt (A.19)

dispersion factor:

f (t)
τ ≡ 1− ı

τ

mσ2
t

(A.20)

and normalization factor:

F (t)
τ ≡ 4

√
1
πσ2

t

√
1

f
(t)
τ

(A.21)

The sign of the complex part of a dispersion factor is negative for time;
positive for space:

f (x)
τ ≡ 1 + ı

τ

mσ2
x

(A.22)

If we are dealing with multiple Gaussian test functions we may make name
changes f → g,F → G, f → h,F → H to the dispersion and normalization
factors.

In general we can switch between time/energy and space/momentum forms
by taking the complex conjugate and interchanging variables t↔ x. This is our
own small version of the CPT transformations.

As expressions like σ2
px

are cumbersome we sometimes replace them with
σ̂2
x ≡ σ2

px
taking implicit advantage of the fact that with our conventions σ2

x =
1
σ2

px

.
If we need to tag various Gaussian wave functions we may assign each specific

letter a, b, c as:

ϕ̃(a)
τ (t) = F (a)

τ e
−ıEat−ı

E2
a

2m τ− 1

2σ
(a)2
t f

(a)
τ

(t−ta−Ea
m τ)2

(A.23)

We usually use ϕ for Gaussian test functions but may use a capital letter to
reduce notational clutter, as A ≡ ϕ(a).
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A.5 Acronyms

CM Classical Mechanics: all four dimensions treated as parameters.

SQM Standard Quantum Mechanics: quantum mechanics with the three space
dimensions treated as observables, time as a parameter.

TQM Temporal Quantum Mechanics: SQM but with time treated as an ob-
servable on the same basis as the three space dimensions.

B Classical equations of motion

We verify that we get the classical equations of motion from the Lagrangian.
Broken out into time and space parts the Lagrangian is:

L
(
t, ~x, ṫ, ~̇x

)
= −1

2
mṫ2 +

1
2
m~̇x · ~̇x− qṫΦ (t, ~x) + qẋjAj (t, ~x)− 1

2
m (B.1)

The Euler-Lagrange equations are:

d

dτ

δL

δẋµ
− δL

δxµ
= 0 (B.2)

From the Euler-Lagrange equations we have:

mẗ = −qΦ̇ + qṫΦ,0 − qẋjAj,0 = −qẋj (Φ,j +Aj,0) (B.3)

mẍi = −qȦi − qṫΦ,i + qẋjAj,i = −qṫAi,0 − qẋjAi,j − qΦ,iṫ+ qẋjAj,i (B.4)

Here the Roman indexes, i and j, go from 1 to 3 and if present in pairs are
summed over. We use an overdot to indicate differentiation by the laboratory
time τ .

By using:

~E = −∇Φ− ∂ ~A

∂t
(B.5)

~B = ∇× ~A (B.6)

we get:
mẗ = q ~E · ~̇x (B.7)

and:
m~̈x = qṫ ~E + q~̇x× ~B (B.8)

which are the familiar equations of motion of a classical particle in an electro-
magnetic field if we take τ as the proper time of the particle.

In the text we take τ as the laboratory time rather than the proper time of
the particle. In the non-relativistic case, they are nearly the same.
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C Unitarity

Since there is a chance of the wave function “sneaking past” the plane of the
present, we have to be particularly careful to confirm unitarity.

To establish that the path integral kernel is unitary we need to establish that
it preserves the normalization of the wave function. The analysis in the sub-
section 2.7 only established this for the free case. We therefore need to confirm
that the normalization of the wave function is preserved in the general case. We
use a proof from Merzbacher [77] but in four rather than three dimensions.

We form the probability:

P ≡
∫
d4xψ∗ (x)ψ (x) (C.1)

We therefore have for the rate of change of probability in time:

dP

dτ
=
∫
d4x

(
ψ∗ (x)

∂ψ (x)
∂τ

+
∂ψ∗ (x)
∂τ

ψ (x)
)

(C.2)

The Schrödinger equations for the wave function and its complex conjugate are:

∂ψ

∂τ
= − ı

2m
∂µ∂µψ+

q

m
(Aµ∂µ)ψ+

q

2m
(∂µAµ)ψ+ ı

q2

2m
AµAµψ− ı

m

2
ψ (C.3)

∂ψ∗

∂τ
=

ı

2m
∂µ∂µψ

∗ +
q

m
(Aµ∂µ)ψ∗ +

q

2m
(∂µAµ)ψ∗ − ı

q2

2m
AµAµψ

∗ + ı
m

2
ψ∗

(C.4)
We rewrite ∂ψ

∂τ and ∂ψ∗

∂τ using these and throw out canceling terms. Since the
probability density is gauge independent, we choose the Lorentz gauge ∂A = 0
to get:

dP

dτ
=
∫
d4x

(
ψ∗
(
− ı

2m
∂µ∂µψ +

q

m
(A∂)ψ

)
+
( ı

2m
∂µ∂µψ

∗ +
q

m
(A∂)ψ∗

)
ψ
)

(C.5)
We integrate by parts; we are left with zero on the right:

dP

dτ
= 0 (C.6)

Therefore the rate of change of probability is zero, as was to be shown. And
therefore the normalization is correct in the general case.

D Gauge transformations

As noted in the text, the ambiguities in the phase of the normalization of the
wave function may be seen as representing a kind of gauge transformation.
We have all the usual possibilities for gauge transformations. And we have in
addition the possibility of gauge transformations which are a function of the
laboratory time.
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To explore this, we write the wave function as a product of a gauge function
in coordinate time, space, and laboratory time and a gauged wave function:

ψ′τ (t, ~x) = eıqΛτ (t,~x)ψτ (t, ~x) (D.1)

If the original wave function satisfies a gauged Schrödinger equation:(
ı
∂

∂τ
− qAτ (x)

)
ψτ (x) = − 1

2m

(
(p− qA)2 −m2

)
ψτ (x) (D.2)

the gauged wave function also satisfies a gauged Schrödinger equation:(
ı
∂

∂τ
− qA′

τ (x)
)
ψ′τ (x) = − 1

2m

(
(p− qA′)2 −m2

)
ψ′τ (x) (D.3)

provided we have:

A′
τ (x) = Aτ (x)− ∂Λτ (x)

∂τ
(D.4)

and the usual gauge transformations:

A′µ = Aµ − ∂µΛτ (x) (D.5)

or:
Φ′ = Φ− ∂Λ

∂t
~A′ = ~A+∇Λ

(D.6)

If the gauge function Λ is not a function of the laboratory time (Λ = Λ (t, ~x))
then we recover the usual gauge transformations for Φ and ~A. On the other
hand, we could let the gauge depend on the laboratory time, perhaps using
different gauges for different parts of the problem in hand.

E Free wave functions and kernels

We here assemble the solutions of the free Schrödinger’s equation for reference.
In general the free wave functions and kernels can be written as a coordinate

time part times a familiar non-relativistic part. The division into coordinate
time, space, and – occasionally – clock time parts is to some extent arbitrary.

E.1 Plane waves

Plane wave in coordinate time:

φ̃τ (t) =
1√
2π

exp
(
−ıE0t+ ı

E2
0

2m
τ

)
(E.1)

Plane wave in space:

φ̄τ (~x) =
1

√
2π

3 exp

(
ı~p0 · ~x− ı

~p0
2

2m
τ

)
(E.2)
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The full plane wave is the product of coordinate time and space plane waves:

φτ (x) = φ̃τ (t) φ̄τ (~x) exp
(
ı
m2

2m
τ

)
=

1
4π2

exp (−ıp0x− ıf0τ) (E.3)

with definition of clock frequency:

f0 ≡ −
E2

0 − ~p0
2 −m2

2m
(E.4)

The equivalents in momentum space are δ functions with a clock time de-
pendent phase:

ˆ̃
φτ (E) = δ (E − E0) exp

(
ı
E2

0
2mτ

)
ˆ̄φτ (~p) = δ(3) (~p− ~p0) exp

(
−ı ~p

2
0

2mτ
)

φ̂τ (p) = ˆ̃
φ0 (E) ˆ̄φ0 (~p) exp

(
−ım

2

2mτ
)

= δ(4) (p− p0) exp (−ıf0τ)

(E.5)

E.2 Gaussian test functions

By Morlet wavelet decomposition any normalizable wave function may be writ-
ten as a sum over Gaussian test functions. We have specified the conventions we
are using for Gaussian test functions above; here we look specifically at Gaussian
test functions as solutions of the free Schrödinger equation.

E.2.1 Time and energy

Gaussian test function in coordinate time at clock time zero:

ϕ̃0 (t) ≡ 4

√
1
πσ2

t

e
−ıE0(t−t0)− (t−t0)2

2σ2
t (E.6)

ˆ̃ϕ0 (E) ≡ 4

√
1

πσ2
E

e
ıEt0− (E−E0)2

2σ2
E (E.7)

With these conventions, the energy and coordinate time dispersions are re-
ciprocals:

σE =
1
σt

(E.8)

As noted, it is often convenient to thread a letter through the wave function
to label the constants, e.g.:

ϕ̃a (t) ≡ 4

√
1

πσ
(a)2
t

e
−ıEa(t−ta)− (t−ta)2

2σ
(a)2
t (E.9)

ˆ̃ϕa (E) ≡ 4

√
1

πσ
(a)2
E

e
ıEta− (E−Ea)2

2σ
(a)2
E (E.10)
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A typical case is where a→ 0, to represent the function at τ = 0.
Gaussian test function for coordinate time as a function of clock time:

ϕ̃τ (t) = 4

√
1
πσ2

t

√
1

f
(t)
τ

e
−ıE0t+ı

E2
0

2m τ− 1

2σ2
t f

(t)
τ

(t−t0−E0
m τ)2

(E.11)

with dispersion factor f (t)
τ ≡ 1−ı τ

mσ2
t

and with expectation, probability density,
and uncertainty:

〈tτ 〉 = t0 + E
mτ = t0 + γτ

ρ̃τ (t) =
√

1
πσ2

t
exp

− (t−〈tτ 〉)2

σ2
t

„
1+ τ2

m2σ2
t

«


(∆t)2 ≡
〈
t2
〉
− 〈t〉2 = σ2

t

2

∣∣∣1 + τ2

m2σ4
t

∣∣∣
(E.12)

In the non-relativistic case, if we start with t0 = τ0, then we have 〈t〉 ≈ τ
throughout.

For longer clock times the uncertainty in coordinate time is proportional to
the dispersion in the energy:

∆t ∼ τ

mσt
=

τ

m
σE (E.13)

Gaussian test function in energy:

ˆ̃ϕτ (E) ≡ 4

√
1

πσ2
E

e
ıEt0− (E−E0)2

2σ2
E

+ıE2
2m τ

(E.14)

with expectation, probability density, and uncertainty:

〈E〉 = E0

ˆ̃ρτ (E) = ˆ̃ρ0 (E) =
√

1
πσ2

E
exp

(
− (E−E0)

2

σ2
E

)
(∆E)2 = σ2

E

2

(E.15)

E.2.2 Single space/momentum dimension

Gaussian test function in one space dimension at clock time zero:

ϕ̄0 (x) = 4

√
1
πσ2

x

e
ıp0(x−x0)− (x−x0)2

2σ2
x (E.16)

and in momentum:

ˆ̄ϕ0 (p) = 4

√
1
πσ2

p

e
−ıpx0− (p−p0)2

2σ2
p (E.17)
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As with time and energy, the space and momentum dispersions are recipro-
cal:

σp ≡
1
σx

(E.18)

When we have to consider the dispersion for all three space momentum we
may reduce the level of nesting by writing:

σ̂x ≡ σpx , σ̂y ≡ σpy , σ̂z ≡ σpz (E.19)

Gaussian test function in one space dimension as a function of clock time:

ϕ̄τ (x) = 4

√
1
πσ2

x

√
1

f
(x)
τ

e
ıp0x− 1

2σ2
xf

(x)
τ

(x−x0− p0
m τ)2−ı p2

0
2m τ

(E.20)

The definition of the dispersion factor f (x)
τ = 1 + ı τ

mσ2
x τ

is parallel to that
for coordinate time (but with the opposite sign for the imaginary part).

Expectation, probability density, and uncertainty for x:

〈xτ 〉 = x0 + px

m τ = x0 + γvxτ

ρ̄τ (x) =
√

1
πσ2

x
exp

− (x−〈xτ 〉)2

σ2
x

„
1+ τ2

m2σ2
x

«


(∆x)2 ≡
〈
x2
τ

〉
− 〈xτ 〉2 = σ2

x

2

∣∣∣1 + τ2

m2σ4
x

∣∣∣
(E.21)

and similarly for y and z.
As clock time goes to infinity, the uncertainty in space scales as:

∆x ∼ τ

mσx
=

τ

m
σ̂x (E.22)

Negative x-momentum is movement to the left, positive to the right. As
we require the most complete parallelism between time and space, we therefore
have that positive energy corresponds to movement into the future, negative
into the past. As most of our wave functions have an energy of order:

E ∼ m+
~p2

2m
� 0 (E.23)

they are usually going into the future. As expected.
Gaussian test function for momentum in one dimension as a function of clock

time:

ˆ̄ϕτ (p) = 4

√
1
πσ2

p

e
−ıpx0− (p−p0)2

2σ2
p

−ı p2

2m τ
(E.24)

The expectation, probability density, and uncertainty for p are constant:

〈p〉τ = 〈p〉0 = p0

ˆ̄ρτ (p) = ˆ̄ρ0 (p) =
√

1
πσ2

p
exp

(
− (p−p0)2

σ2
p

)
(∆p)2 = σ2

p

2

(E.25)

109



E.2.3 Covariant forms

Usually we treat four dimensions wave functions as simple products of one di-
mensional wave functions. But it is more appropriate in general to treat them
as a single covariant object.

We define the four dimensional dispersion Σ in position space at clock time
zero:

Σµν0 ≡


σ2
t 0 0 0
0 σ2

x 0 0
0 0 σ2

y 0
0 0 0 σ2

z

 (E.26)

The determinant takes the simple form:

detΣ0 = σ2
t σ

2
xσ

2
yσ

2
z (E.27)

With this we have the wave function at clock time zero:

ϕ0 (x) = 4

√
1

π4det (Σ0)
e
−ıpµ

0 (x−x0)µ−
1
2 (x−x0)µ

Σ−1µν
0 (x−x0)ν (E.28)

Four dimensional dispersion as a function of clock time τ :

Σµντ ≡


σ2
t f

(t)
τ = σ2

t − ı τm 0 0 0
0 σ2

xf
(x)
τ = σ2

x + ı τm 0 0
0 0 σ2

yf
(y)
τ = σ2

y + ı τm 0
0 0 0 σ2

zf
(z)
τ = σ2

z + ı τm


(E.29)

Four dimensional wave function as a function of clock time:

ϕτ (x) = 4

√
det (Σ0)

π4det2 (Στ )
e
−ıpµ

0 (x−x0−vτ)µ−
1
2 (x−x0−vτ)µ

Σ−1µν
τ (x−x0−vτ)ν

−ıf0τ

(E.30)
with the obvious definition of the four velocity:

vµ ≡
pµ
m

(E.31)

In the general case, the wave function does not split into coordinate time
and space factors. But it may still be represented as a sum over basis wave
functions that do, via Morlet wavelet decomposition.

We have similar but simpler formulas in momentum space. In momentum
space at clock time zero:

ϕ̂0 (p) = 4

√√√√ 1

π4 det
(
Σ̂
)e−ıpx0− 1

2 (p−p0)µ(Σ−1)µν
(p−p0)ν (E.32)
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and as a function of clock time:

ϕ̂τ (p) = 4

√√√√ 1

π4 det
(
Σ̂
)e−ıpx0− 1

2 (p−p0)µ(Σ−1)µν
(p−p0)ν−ıf0τ = ϕ̂0 (p) exp (−ıf0τ)

(E.33)
We define the momentum dispersion matrix Σ̂ as the reciprocal of the coor-

dinate space dispersion matrix Σ0:

Σ̂ ≡


σ̂2
t 0 0 0
0 σ̂2

x 0 0
0 0 σ̂2

y 0
0 0 0 σ̂2

z

 (E.34)

E.3 Free kernels

We list the kernels corresponding to the free Schrödinger equation in time. These
are retarded kernels going from clock time zero to clock time τ , so include an
implicit θ (τ).

E.3.1 Coordinate time and space

Kernel in coordinate time:

K̃τ (t′′; t′) =
√

ım

2πτ
exp

(
−ım (t′′ − t′)2

2τ

)
(E.35)

In three space we have the familiar non-relativistic kernel (e.g. Merzbacher
[77]):

K̄τ (~x′′; ~x′) =
√
− ı

2πτ

3

exp

(
ım

(~x′′ − ~x′)2

2τ

)
(E.36)

The full kernel is:

Kτ (x′′;x′) = K̃τ (t′′; t′) K̄τ (~x′′; ~x′) exp
(
−ım

2
τ
)

(E.37)

Explicitly:

Kτ (x′′;x′) = −ı m2

4π2τ2
e−ım

(t′′−t′)2

2τ +ım
(~x′′−~x′)2

2τ −ım
2 τ (E.38)

E.3.2 Momentum space

Energy part:

ˆ̃Kτ (E′′;E′) = δ (E′′ − E′) exp

(
ı
E′2 −m2

2m
τ

)
(E.39)
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Three momentum part:

~̂Kτ (~p′′; ~p′) = δ(3) (~p′′ − ~p′) exp

(
−ı (~p

′)2

2m
τ

)
(E.40)

Again, the same as the usual non-relativistic kernel.
The full kernel is:

K̂τ (p′′ − p′) = ˆ̃Kτ (E′′;E′) ~̂Kτ (~p′′; ~p′) (E.41)

Spelled out:

K̂τ (p′′; p′) = δ(4) (p′′ − p′) exp

(
ı
E′2 − (~p′)2 −m2

2m
τ

)
(E.42)

or:
K̂τ (p′′; p′) = δ(4) (p′′ − p′) exp (−ıfp′τ) (E.43)

With definition of clock frequency as above:

fp ≡ −
E2 − ~p2 −m2

2m
(E.44)

F Checkpoint Copenhagen

“Atoms are completely impossible from the classical point of
view, since the electrons would spiral into the nucleus.” – Richard
P. Feynman [36]

F.1 Four dimensions and an approximation scheme

Naively we might appear to have a five dimensional coordinate system here:
clock time, coordinate time, and the three space dimensions. When this work
was presented at the 2018 International Association for Relativistic Dynamics
(IARD) conference Dr. Asher Yahalom observed that this is potentially a bit
cumbersome.

Per subsequent discussion with Dr. Yahalom, it is more accurate to describe
it as four dimensions plus an approximation scheme.

Let’s start with a sheet of four dimensional graph paper representing dis-
cretized space time. Alice is off to one side, drawing paths on it. She is interested
in the amplitude for a particle to get from A to B. And to compute this she
draws all possible paths from A to B, planning to sum them using the rules in
the text.

But Alice herself is a part of the universe she is observing.
Therefore we draw Alice on the left as a series of blue dots representing

her at successive clock ticks. At each clock tick she has a corresponding three
dimensional hyper-surface representing her rest frame. These are the horizontal
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Figure F.1: Clock time and coordinate time

lines in the diagram. She is off to one side, because she is after all observing
the particle going from A to B, but she is on the same piece of four dimensional
graph paper because she is part of the same universe.

If she is using SQM to do the calculation then at each clock tick each of her
paths will slide side to side on the corresponding hyper-surface. But if she is
using TQM then the paths will also go forwards and backwards in time, going
off the current hyper-surface, often in quite elaborate ways.

If Bob is also present, we can represent him by a series of green dots on
the right with his own coordinate system. (We have left this off the illustration
because it would make it too busy. Please imagine Bob’s green dots and hyper-
surfaces are present.) He will be looking at the same set of paths, but slicing
them up differently because he has in general a different set of three dimensional
hyper-surfaces.

And if we need to resolve the slight differences between Alice and Bob’s
descriptions – per subsection 3.5 – we can call in Vera in the V frame to provide
the definitive story.

So far so good, we have only one four dimensional coordinate system with
different observers. Each observer has his or her clock time, but these clock
times are present, tick by tick, on the same piece of graph paper. And we have
well-defined rules for going from one observer’s frame to another’s.

The problem comes in when we try to reconcile the quantum descriptions
Alice uses for particles with the classical descriptions she uses for detectors,
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emitters, or herself. We have an impedance mismatch between quantum and
classical descriptions. This is the problem of measurement.

F.2 Quantum descriptions and classical approximations

The critical observation here is Feynman’s: there are no classical atoms. Since
the emitters, detectors, and observers are all made of atoms all are quantum
objects.

This means that there is no transition from a quantum to a classical realm.
Everything on both sides of the act of detection is a quantum system.

So what is going on here?
Most of the systems we deal with can treated for all practical purposes

(FAPP) as if they were classical systems. It is only when we look at certain
parts of the system that we need to get down to the quantum level. When
we describe a particle being ejected from an atom we need to use a quantum
description. When we describe a particle in flight we need to use a quantum
description. When we describe its encounter with a detector we need to use a
quantum description. But once the detector has registered a click, we can use
classical approaches to describe the counting and processing of those clicks.

The rules for detection and emission are ways to navigate the associated
approximations. In a detector, the wave function is not collapsing, instead we
are passing from a quantum to a classical description. And in emission, the
particle is not originally classical, it is just that up to the starting gun, it can
be treated as if it were.

In human terms, picture Alice going thru passport control. Bob, now a
customs official (he gets around), stamps her passport with a visa stamp. She
then heads to her ultimate destination. Both Alice and Bob are – per Feynman –
quantum systems. Their previous and subsequent paths are unknown to official
customs. But we have that visa stamp and associated computer records. They
are the measurement. They certify that at time T position X with uncertainties
∆T and ∆X Alice and Bob encountered each other.

Since Bob’s location is highly localized – he is in a customs booth, they are
not big – we treat this as a measurement of Alice’s position. But the situation
is in reality completely symmetrical. We can think of it as Alice measuring Bob
or Bob measuring Alice. But for customs purposes only the visa stamp matters.
The visa stamp is the measurement.

Ultimately we must always be prepared to go down to the quantum level.
The quantum rules are decisive; the classical rules a mere useful approximation.
Even the visa stamp itself is made of atoms, of quantum mechanical objects.
But in some cases we can get away with a classical analysis.

The division between quantum and classical is a division of analysis. It is
not part of the physical universe, it is part of how we describe that universe –
allowing for the fact that we are a part of what we are describing.

And we get our definition of clock time from the rest of the universe:

τ = 〈rest of universe |t| rest of universe〉 (F.1)
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This may be seen as a variation on Fanchi’s “historical time”[27]. He used
an outside system, S2, to define a reference clock. We extend his S2 to be
the entire rest of the universe (fortunately there are no budget constraints on
thought experiments).

F.3 Where, when, and to what extent?

But to take this point from the realm of philosophy to the realm of science
we need to throw some numbers into the mix, we need to answer the ques-
tions: “when, where, and to what extent does the classical approximation break
down?”

The rules in the Copenhagen interpretation are not specific. “Somewhere”
between where the particle is being described by quantum mechanics and where
it is detected, the particle goes through a “checkpoint Copenhagen”, where its
description collapses from the fuzziness of quantum mechanics to the determin-
ism and specificity of classical mechanics.

This is both a strength and a weakness of the Copenhagen interpretation.
It is a strength because it let physicists get on with physics. And because it

does not try to “explain” what is going on.
But it is a weakness because the terms of the transition are not specified.

Schrödinger’s cat experiment is the most striking illustration of this point [101].
Decoherence provides part of the answer [87, 43, 48, 60, 100]. But decoher-

ence is not yet as quantitative as one might like (although see Venugopalan,
Qureshi, and Mishra [111]).

It is possible that new physics plays a role in the transition. The Ghirardi,
Rimini, and Weber (GRW ) [41] approach and more generally the continuous
spontaneous localization (CSL) approaches (see Dickson [23]) hypothesize ad-
ditional physics. These alternatives are helpful in parameterizing the transition,
but have not had any experimental confirmation.

Meanwhile, the quantum cats continue to get bigger and bigger, less and less
microscopic [86, 112]. At some point we will be able to see the transition itself,
or show that there is none.

TQM does not specifically address this question. We have taken the existing
rules as given. However the temporal fluctuations in TQM (see especially the
entropic estimate of the initial wave function subsubsection 4.1.2) provide a
source of “internal decoherence” so would affect estimates of the size and rate
of decoherence. (We owe the phrase “internal decoherence” to Dr. Daniel Braun
at the 2007 Feynman Festival.)
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